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ABSTRACT

Measures of agro-ecosystems genetic variability are essential to sustain scientific-based 
actions and policies tending to protect the ecosystem services they provide. To build the genetic 
variability datum it is necessary to deal with a large number and different types of variables. 
Molecular marker data is highly dimensional by nature, and frequently additional types of 
information are obtained, as morphological and physiological traits. This way, genetic variability 
studies are usually associated with the measurement of several traits on each entity. Multivariate 
methods are aimed at finding proximities between entities characterized by multiple traits by 
summarizing information in few synthetic variables.

In this work we discuss and illustrate several multivariate methods used for different 
purposes to build the datum of genetic variability. We include methods applied in studies for 
exploring the spatial structure of genetic variability and the association of genetic data to 
other sources of information. Multivariate techniques allow the pursuit of the genetic variability 
datum, as a unifying notion that merges concepts of type, abundance and distribution of 
variability at gene level.

Keywords
ordination • clustering • multivariate association • spatial variability

RESUMEN

Obtener estimaciones confiables de la diversidad genética en los agroecosistemas es 
esencial para tomar decisiones basadas en el conocimiento científico  que permitan proteger 
los servicios ecosistémicos que éstos brindan. Para construir el dato de variabilidad genética 
es necesario trabajar con gran cantidad de variables de distinta naturaleza. Los marcadores 
moleculares proveen datos multidimensionales que generalmente son complementados con 
otros tipos de información, por ejemplo datos morfológicos o fisiológicos. Así, los estudios sobre 
variabilidad genética están frecuentemente asociados a la medición de muchos caracteres en 
una misma entidad biológica. De especial interés son los métodos multivariados diseñados 
para analizar similitudes entre entidades caracterizadas por múltiples variables que permiten 
resumir la información en pocas variables sintéticas informativas de la variabilidad total. 

En este trabajo se discuten e ilustran distintos métodos multivariados utilizados en la 
construcción del dato de variabilidad genética. Se incluyen métodos aplicados a la exploración 
de la estructura espacial de la variabilidad genética y métodos para estudiar la asociación 
de los datos genéticos con otras fuentes de información. Las técnicas multivariadas en 
esta revisión permiten abordar el problema de construir al dato de variabilidad genética 
como un concepto donde convergen mediciones sobre tipo, abundancia y distribución de 
la variabilidad a nivel de genes.

Palabras clave
ordenación • agrupamiento • asociación multivariada • variabilidad espacial
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INTRODUCTION

Biodiversity in agro-ecosystems can be characterized at different levels 
of organization which are affected by different factors, ranging from landscape 
heterogeneity to land use and management. Knowledge of the relationship that 
exists between management practices and biodiversity is necessary to recommend 
management practices that minimize the loss of stability in the production. In 
consequence, sustainable agriculture requires information on biodiversity, comprising 
the appearance, structure and function of all levels of biological organization, including 
ecosystems, species and genes. 

This has been acknowledged by the World Conservation Union (IUCN), which 
recommends conservation of biological diversity at the three levels (McNeely et al., 
1990) and by the recently held Convention on Biological Diversity (2010) which has 
implemented goals with respect to the genetic level. There are many empirical examples 
showing how the amount and distribution of genetic variation affects not only species 
and ecosystems, but also genes. 

The genetic variability datum is essential to determine the real magnitude of spatial 
and temporal changes of biodiversity in agroecosystems and to sustain scientific-
based actions and policies tending to protect the ecosystem services that they provide. 
Diversity is a concept that should reflect the number and abundance of different types 
in a collection of objects (populations, individuals, loci).

Genetic diversity is a part of biodiversity that contributes to various levels 
and therefore, can also be measured at several scales including individuals, 
populations,species and even ecosystems. Therefore, to measure gene diversity, 
in addition to identifying the object of study, it is vital to identify and characterize 
the variables measured (e.g. genotypes, haplotypes, alleles) and to establish the 
temporal and/or spatial dimension of the study. Usually, the genetic variability datum, 
as a unifying notion that merges concepts of type, abundance and distribution of the 
evaluated variables in the set of biological entities of interest.

The information necesary to build the genetic variability datum is statistical since 
many entities should be evaluated. Each entity can be characterized by different types 
of data, such asmolecular, morphological and physiological,with several variables of 
each type measured on every entity.

In figure 1 (p. 264), two examples of common data-sets in studies designed 
to explore genetic variability are shown. In the first case (left), variables represent 
molecular markers; one or zero indicate if the molecular marker, or biomarker used 
to explore the genome, is present (1) or absent (0). If the biological entity in which the 
variable has been measured is a population, this information can be expressed by 
relative frequencies as it is shown in figure 1 (right), where 7 populations were explored 
with 7 markers genotyping several individuals within populations.
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Ind M1 M2 M3 M4 M5 M6 M7
1 1 0 1 1 0 1 0
2 1 0 1 1 0 1 1
3 1 1 0 1 0 1 1
4 0 0 1 1 0 1 1
5 1 0 1 1 1 0 1
6 1 0 1 0 0 0 1
7 1 0 1 1 0 0 0

Pop M1 M2 M3 M4 M5 M6 M7
1 0,14 0,00 0,16 0,20 0,32 0,12 0,06
2 0,20 0,00 0,07 0,13 0,41 0,09 0,10 
3 0,13 0,60 0,00 0,00 0,00 0,07 0,20 
4 0,00 0,13 0,13 0,13 0,15 0,36 0,10 
5 0,12 0,19 0,50 0,08 0,01 0,00 0,00 
6 0,14 0,30 0,06 0,00 0,00 0,50 0,00 
7 0,13 0,20 0,27 0,18 0,30 0,10 0,20 

Figure 1.	An example of typical molecular multivariate data where columns correspond 
to molecular markers and rows correspond to biological entities. Data 
corresponds to absence (0) or presence (1) of marker per individuals (left) 
and to marker relative frequencies per population (right).

In addition to this, other covariates could be linked to the data, like spatial 
and temporal coordinates which should be also incorporated in the biodiversity 
analysis. As consequence of the multidimensional nature of information; statistical 
multivariate algorithms have gained acceptance among biologists and agronomists.
Several software allow the use of multivariate algorithms to handle several variables 
simultaneously. Moreover, free statistical software specifically designed to perform 
these techniques with genetic data have been made available. The examples in this 
work were processed with Info-Gen (Balzarini and Di Rienzo, 2004), software freely 
available at www.info-gen.com.ar. However, all the illustrated analysis can be also 
obtained using the R software (http://cran.r-project.org/). The objective of this review is 
to identify several multivariate techniques currently used to quantify genetic variability.

Multivariate exploratory analyses
Multivariate ordination and classification methods are aimed at finding proximities 

between entities characterized by multiple variables by summarizing information in few 
synthetic variables (Johnson and Wichern, 1998). Each synthetic variable is created 
by combining the original variables measured on each object, usually by means of a 
linear combination in which each one is differentially weighted. It is usually expected 
that most of the information in the set of original variables can be captured by a small 
number of these new synthetic variables expressed as linear combinations of the 
original ones. The efficiency of these methods is dependenton the ability of users 
to interpret the synthetic variables and whether a small number of those synthetic 
variables captures enough information or an important portion of the total variability.

 
Multivariate methods have been shown to be efficient in extracting information 

from gene level (Cavalli-Sforza, 1966; Johnson et al., 1969; Smouse et al., 1982) 
because of their ability to summarize multivariate information derived from the use of 
genetic markers. From these early applications to current innovative developments 
(Patterson et al., 2006; Pavoine and Bailly, 2007; Jombart et al., 2008, Jombart et al., 
2010), these methods have proven to be useful in various type of biodiversity studies, 
including conservation (Moazami-Goudarzi et al., 1997; Escudero et al., 2003; Laloë 
et al., 2007), landscape genetics (Angers et al., 1999; Mcrae et al., 2005), and the 
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identification of adaptations (Johnson et al., 1969; Mulley et al., 1979; Barker et al., 
1986). In essence, dimension reduction techniques extract successive components 
from a multivariate similarity/dissimilarity matrix containing information about all pair 
wise individual profile comparisons. The synthetic variables are used as new axes of 
low-dimensional spaces to graphically represent the variability among entities. Main 
differences between observations are visualized on the axes beginning by axis 1. 

Ordination methods
Principal components analysis (PCA) was first introduced to the study of genetic 

data almost thirty years ago by Cavalli-Sforza (1966). PCA is applicable to quantitative, 
or at least ordinal, type of data.It finds an orthogonal basis for the data in such a way 
that the first axis is along the direction of greatest variation of the multidimensional data 
and subsequent axes maximize explained variance, given that they are orthogonal to 
previous axes. Therefore, with PCA we reduce a set of correlated variables to a small 
number of linear combinations of these variables (principal components or synthetic 
variables). Such components give scatter plots of observations with optimal properties 
to study the underlying variability and correlation. If X denotes the n×p data matrix,  with 
nentities and p variables, the PCA operates on the unique factorization of matrix

 
  1n   X'X 

(or transformation) giving a set of eigenvectors containing the weight coefficients to build 
the components. The singular value decomposition is the algorithm that all software use 
to build the principal components. These weights depend on the relative importance of 
variables to separate objects, i.e., to explain variability among entities. The data may or 
may not be standardized leading to different PCA types. 

The PCA with standardized data operates on the correlation matrix and is useful 
when variables are not commensurable. The PCA without standardization is implemented 
on the covariance matrix of the data; consequently it allows analyzing variances beside 
correlations. For data of allele frequencies or other type of proportions, it is common 
to center the relative frequencies by the mean of each column data. The PCA can be 
applied either on the correlation or covariance matrix of variables, or over the correlation 
or covariance matrix of observations. The former provides an ordering of observations, 
while the second provides an ordering of thevariables. Both ordinations can be visualized 
simultaneously bymeans of biplots (Gabriel, 1971) where objects and variables (markers) 
are representedin a common space. For the population data showed in figure 1 (right, 
p. 264), the biplot for the centered data was built (figure 2, left, p.266). 

PCA preserves the canonical Euclidean distance among the studied entities. 
In contrast, Principal Coordinates Analysis (PCO) cansummarize any distance 
between entities. The algorithm used to build the Principal coordinates is also the 
singular value decomposition, but operating on a user defined distance matrix.

The technique is a type (metric) of multidimensional scaling. It is useful to 
determine similarities among entities or traits and to depict similarities/distances 
on reduced spaces where the inter-distances in the full space are reproduced. 
PCO offers the opportunity of using different distance metrics including measures 
of genetic variability that are directly related to a population genetic model, such as 
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the Fst statistics,which measures genetic differentiation between populations, and 
several genetics distances between individuals as the Roger´s distance (Baker and 
Moeed, 1987).For instance, PCO has been used to summarize matrices of pairwise 
Fst between populations and of Rogers’ distance between multiallele molecular 
genotypes. However, PCO does not provide a representation (in the same space) 
of the variables used in the characterization (figure 2, right).

Minimum spanning trees (MST) (Gower and Ross, 1969) is another tool commonly 
used to improve the visualization in ordination analyses, mainly PCO configurations.
The algorithm produces  a collection of straight lines that link each point on the graph 
in such a way that there are no closed loops and that each point is connected to every 
other point either directly or indirectly. Segments are connected in such a way that 
the sum of the lengths of the individual segments is minimized. Computed on the full 
dimension of data but showed on the reduced space, the MST provides information on 
the quality of the projection on the low dimensional space, showing relationships that 
may not be seen by inspection on the reduced space.If many branches and segments 
cross each other, it suggests distortion problems in the projection which could bias 
regular interpretations (figure 2, right).

Figure 2.	Biplot by PCA of population centered data showing allele markers (white 
dots) and entities (black dots) in the same space. PC1 and PC2 are synthetic 
variables (Principal Components) that explain 47.9% and 27.4% of total 
variability, respectively (left). In the right panel PCO is used to visualize 
variability between entities characterized by binary marker information. The 
Roger´s distance was used for measuring profile similarity and a MST was 
over-imposed on the PCO ordination.

Clustering methods
Several clustering algorithm shave proved to be a powerful tool to investigate natural 

clusters of genetic data (Peña et al., 2010). These algorithms range from hierarchical 
clustering (Eisen et al., 1998; Levenstien et al., 2003), non hierarchical clustering such 
as k-means and clustering by simulated annealing (Lukasin et al., 2001) to neural net 
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work algorithms such as Self-Organizing Maps(SOM; Töronen, 1999; Fernandez and 
Balzarini, 2007). All clustering algorithms tend to join objects of interest into clusters 
such that the elements in a cluster are more alike than elements in different clusters. 
Clustering techniques do nota priori assume any grouping and demand the selection of 
a distance/similarity metric between objects and between clusters. To cluster n samples, 
a n×n distance matrix between samples is used, mean while to cluster p markers 
the input distances are arranged in a p×p matrix. With agglomerative hierarchical 
clustering procedures, the objects are grouped in a pairwise mode as a function of 
their similarities; the process begins by joining two objects with most similarity and 
continues joining the other objects or clusters until all elements belong to the same 
group. The distance between two clusters can be defined either directly or by an 
equation for updating a distance matrix when two clusters are joined. The mathematical 
expression of the distance between two clusters defines the clustering method. Most of 
the applications with genetic data use the following methods: Unweigthed Pair-Group 
Arithmetic Average (UPGMA, Sokal et al., 1958), Ward’s minimum variance (Ward, 
1963), and nearest neighbor (Wong et al., 1983).

The history of this algorithm is summarized in a dendrogram, asit is shown in 
figure  3 (Anderberg, 1973). The dendrogram shows that population 1 and 2 are more 
similar than any other pair of populations because they are joined at the smallest 
Euclidean distance, and population 3 is the most distintic one. The resulting dendrogram 
is usually presented with measures suggesting the goodness of the clustering with 
respect to the object distances in the full space (cophenetic correlation coefficient) 
(Rohlf and Fisher, 1968). Info-Gen gives such coefficient which allows researchers 
to quantity the correlation between the classification of entities on the dendrogram 
and the tree classification of entities in the multi dimensional space. The cophenetic 
correlation ranges from 0 to 4.

Figure 3.	 Dendrogram resulting by UPGMA algorithm with data of allele frequency of 
7 populations extracted from figure 1, right (p. 264). Cophenetic correlation 
was 0.92.
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Alternatively, objects can be grouped by means of machine learning techniques 
such as self organized maps (SOM) (Lippman, 1989) which couple different strategies 
to identify clusters. They providean opportunity to visualize groups when many traits are 
collected on each entity, such as thousand of markers. SOM is an unsupervised neural 
network algorithm able to find relationships between high dimensional data, grouping 
and mapping them topologically. It implements a linear projection from a space of 
p-dimensional entries to a low (1 or 2) dimensional space. The SOM algorithm creates 
a new representation of objects arranged in a net. Closer nodes are more similar than 
nodes topologically apart. Each node comprises a number of entities. A central challenge 
in analyzing genetic variability is to explore whether there is any evidence that the 
samples in the data are structured. For example we might be interested in determining 
if the individuals are from a homogeneous population or from a population containing 
subgroups that are genetically distinct. Understanding such structure may be important 
to key scientific issues, like uncovering the demographic history of the population under 
study. This knowledge is important for pest control programs.  Additionally, the presence 
of undetected population structure in association mapping studies can lead to spurious 
associations and thus invalidate standard tests (Ewens and Spielman, 1995). 

Patterson et al. (2006) showed recently that PCA can be successfully used to 
detect population structure, in particular in large datasets consisting of thousands of 
molecular markers. The idea is to run a PCA and after that, a cluster analysis using 
the significant PC as input variables. Recently,also Discriminant Analysis of Principal 
Components or Principal Coordinates (DAPC), a new methodological approach, has 
been introduced to study genetic structure (Jombart et al., 2010). As well as Patterson´s 
proposal, DAPC relies on data transformation using ordination techniques as a prior 
step to Discriminant Analysis (DA), which ensures that variables submitted to DA are 
perfectly uncorrelated. Without implying a necessary loss of genetic information, this 
transformation allows DA to be applied to various types of genetic data.

Spatial analysis of genetic variability
The joint analysis of spatial and genetic data is rapidly becoming the norm in 

conservational biology and agronomy. More and more studies explicitly describe and 
quantify the spatial organization of genetic variation and try to relate it to underlying 
ecological processes and environments. The spatial detection and location of genetic 
discontinuities between biological entities (populations or individuals) is essential 
to provide information on how environmental features and management practices 
influence population genetic structure (Manel et al., 2003, Lao et al., 2008).

Synthetic variables obtained from multivariate techniques, like PCA, summarize in 
few uncorrelated quantitative variables the genetic variation expressed by many loci and 
can be used for the identification of spatial patterns in the genetic variability. Synthetic 
variables that summarize high percentages of the variability can be used as single 
variables to model the spatial autocorrelation of genetic variability allowing the inference 
of spatial parameters as the range and sill. The spatial interpolation of the major principal 
components derived from PCA leads to a “synthetic map” of genetic variability. Synthetic 
maps have been used to visualize pest dispersion in crops (Nansen et al. 2003) and for 
mapping genetic variability of livestock in Africa (Hanotte et al., 2002).
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However, PCA is not properly designed to investigate spatial patterns, using spatial 
information, such as latitude and longitude of sample locations, a posteriori of the 
multivariate analysis. The recently developed Spatial Principal Components Analysis 
(sPCA) relies on a modification of PCA such that not only the variance of the synthetic 
variables, but also their spatial autocorrelation, is optimized(Jombart et al., 2008). It 
uses spatial information a priori, as input of the multivariate algorithm,and in this way the 
spatial patterns can be more clearly visualized. The new technique allows investigating 
spatial structures other than the most evident, by focusing on the part of the variability 
which is spatially structured and not in the total variability as PCA. With sPCA different 
kinds of spatial structure (global and local) that arise in genetic data can be efficiently 
revealed. In particular, comparison between PCA and sPCA demonstrated thats PCA 
should be preferred to PCA when spatial genetic patterns are researched. In figure 4, 
differences between PCA and sPCA as techniques to reveal spatial patterns is shown.

Figure 4. Scatter plots (left) and maps obtained by interpolation (right) of the first 
synthetic variable obtained by PCA (above) and sPCA (below). Positive and 
negative values are colored in white and black, respectively.
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The values of the PC1 are plotted according to the latitude (Y Coord) and longitude 
(X Coord) of each sample point, the size of the circles shows the magnitude of the 
values and the color differentiates positive and negative values. Both, the scatter plot 
and the map built via the interpolation of the values, show spatial variability since in 
some areas individuals close in space have similar PC1. However, when sPCA is used 
to obtain the synthetic variable, the map reveals clearer spatial structure.

To study the spatial structure of genetic variability, other methods make use 
of multivariate genetic distances as input for geostatistical algorithms. Recently, a 
non-parametric variogram-based method for autocorrelation analysis between DNA 
samples that have been genotyped by means of multilocus-multiallele molecular 
markers has been proposed (Bruno et al., 2008). This method addresses two 
important aspects of fine-scale spatial genetic analyses: the identification of a non-
random distribution of genotypes in space, and the estimation of the magnitude of 
any non-random structure. The method uses a plot of the squared Euclidean genetic 
distances vs. spatial distances between pairs of DNA-samples as an empirical 
variogram (Figure 5). The underlying spatial trend in the plot is fitted by a non-
parametric smoothing (LOESS, Local Regression). Finally, the predicted LOESS 
values are explained by segmented regressions (SR) to obtain classical spatial values 
such as the extent of autocorrelation. The fit by LOESS/ SR is simpler to obtain than 
parametric analyses since initial parameter values are not required during the trend 
estimation process.

Figure 5.	Multivariate genetic distances are plotted against spatial distances (in meters) 
between sampling points. The smoothed trend (dotted line) and the fitted 
model (solid line) suggest that spatial autocorrelation is present up to 200 
m of distance between samples (range).
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Association of genetic markers to other types of data
One of the greatest applications of ordinations in reduced space is the study of 

associations of genetic markers to other types of data (Johnson et al., 1969; Taylor and 
Mitton, 1974; Mulley et al., 1979; Barker et al., 1986; Jarraud et al., 2002). The need to 
study organisms as a whole and find associations between data sets of different nature 
has increased dramatically with the need to observe the complete ecosystem and high 
throughput technologies that produce an incredible amount of data. In phenomics, for 
example, it is essential to analyze associations between genotype and phenotypes 
(Houle et al., 2010). 

In the study of genotype-environment relationships, multivariate methods can 
be used to investigate correlations between genetic data and environmental features 
(Johnson et al., 1969; Mulley et al., 1979). Statistical models of such complex 
interactions are difficult for both computational and biological interpretation aspects. On 
the contrary, multivariate methods can be used to filter the main signals of genetic data 
and to study the association between sets of genotypic, phenotypic and environmental 
data. They are more straightforward and can provide meaningful insight for later 
statistical modeling.

Generalised Procrustes Analysis (GPA), proposed by Gower in 1975, is an 
ordination technique used to determine relationships among observations from the 
simultaneous use of different data types. It allows handling ordinations of a same 
genotype under different types of descriptors and intends to establish agreement or 
consensus between them. GPA allows a deeper study of the relationships among 
relative ordinations of same entities under different types of descriptors to establish 
concordance between characterizations. In GPA, each data set is analyzed with 
an appropriate ordination metric according the nature of data. For example, for 
molecular markers encoded as binary data, PCO using binary similarities/distances 
metrics is recommended. In cases of morphological markers (continuous) a PCA 
may be used to represent relationships among entities. GPA then measures the 
agreement between ordinations, the PCO ordination for molecular markers and 
the PCA ordination for morphological markers. Bramardi et al. (2005) used GPA to 
determine the relationships amonggenotypes via the simultaneous use of agronomic 
traits and molecular markers data.

To illustrate the capacity of GPA to generate ordinations that conciliate alternative 
configurations of same entities, in figure 6 (p. 272) we show an ordination of 20 
individuals by two different types of traits and the ordination produced by GPA. 
Data used in the analyses belong to three populations, which were first arranged 
according to a Principal Coordinate Analysis of molecular data (expressed as binary 
profiles of marker data) and then via PCA of quantitative morphological traits.  In both 
ordinations, two groups appear but they are not the same. Only when both types of 
characterizations are simultaneously considered by GPA, the ordination of entities 
reflects the true underlying structure, allowing the differentiation of the three groups, 
which we knew were present in the data.
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CONCLUSIONS

Multivariate statistical analyses provide different tools to study genetic variability 
expressed among multidimensional entities. These techniques are specially designed 
to perform complex analyses in which different types of variables are involved and 
have some advantages to other statistical procedures. Firstly,exploratory multivariate 
techniques do not require distributional assumptions and do not require to work with 
independent variables; what is more, they benefit from strong correlation structures 
among variables. This is the situation in most biological studies concerning biodiversity 
at gene level, in which molecular marker information may not be independent. Secondly, 
dimension reduction techniques offer the possibility of summarizing the information of 
multiple traits in few synthetic variables. Such synthetic variables may be difficult to 
comprehend but the clarity that emerges in the study of variability patterns from these 
new variablesis invaluable. Synthetic variables that summarize the genetic variability 
allow the use of other techniques that are designed for univariate data to explore 
spatial patterns of biodiversity. In most of the cases, the simultaneous use of different 

Figure 6.
Two-dimensional ordination of 20 
ent i t ies: A) Principal Coordinate 
(PCO) for qualitative traits and B) 
Principal Component Analysis (PCA) 
for quantitative traits, C) configuration 
of consensus matrix of Generalized 
Procrustes Analysis (GPA).White, black 
and grey dots represent the original 3 
populations under study. In panel, A y B 
the populations were not well separated.
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multivariate techniques together with other methodological approaches generates 
maximum knowledge. However, the exploratory analysis is not enough to statistically 
contrast scientific hypotheses. To provide trust worthy information it is important to 
apply these techniques properly and to build the conclusions supported by a complete 
understanding of the biological system. The adequacy of each technique to deal with 
genetic data depends not only on the objectives of the study but also in the nature 
of the data and on the existence of other covariates. The application of multivariate 
methods to explore genetic biodiversity is a developing field, with a wide range of 
biological concepts and analytical methods which offer the possibility of making the 
amount of genetic variability measurable within an ecosystem.
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