

DISEÑO ESTRUCTURAL

Proyecto de Hospital para Luján de Cuyo con sistema Steel Framing

Carrera: Ingeniería Civil

Año: 2020

Autores:

Rodríguez, Aldana Ruggeri, Daniela Campuzano, Micaela

Contenido

1.	OBJET	VOS	6
2.	DESCR	IPCIÓN DEL PROYECTO	6
3.	SELEC	CIÓN DE ALTERNATIVAS	7
4.	TAREA	S A REALIZAR	7
5.	CRONG	DGRAMA	8
6.	ANTEC	EDENTES	8
7.	DEFINI	CIÓN ANTEPROYECTO	24
8.	ZONIFI	CACION	26
9.	GENER	ALIDADES SOBRE LA CONSTRUCCIÓN	28
10.	MA	TERIALES	29
-	10.1.	Acero	29
2	10.2.	Hormigón correspondiente a platea de fundación	29
11.	PLA	NTAS DE ESTRUCTURA	31
12.	VIST	AS ARQUITECTONICAS	33
13.	ANÁ	LISIS DE CARGAS	34
-	13.1.	Cargas permanentes (D)	34
-	13.2.	Cargas accidentales (L)	36
-	l3.3.	Viento (W)	36
-	L3.4.	Nieve (S)	37
-	L3.5.	Sismo (E)	38
	13.5.1	Verificación de regularidad en planta y altura	42
14.	DIM	ENSIONAMIENTO	42
-	L4.1.	Montantes 1° piso dirección "y"	43
-	L4.2.	Montantes 1° piso dirección "x"	44
-	L4.3.	Montantes planta baja piso dirección "y"	46
-	L4.4.	Montantes planta baja piso dirección "x"	47
-	L4.5.	Viga reticulada cubierta	49
-	L4.6.	Viga reticulada entrepiso	51
-	L4.7.	Correas en cubierta	53
-	L4.8.	Correas en planta baja	54

:	14.9.	Flejes de acero	55
	14.9.1.	. Flejes primer piso	56
	14.9.2.	. Fleje planta baja	58
:	14.10.	Escalera	59
15	MOI	DELADO ESTRUCTURAL	61
16	VER	IFICACIÓN	63
	16.1.	Verificación montantes a compresión	63
	16.1.1.	. Montante 1° piso "dirección y"	63
	16.1.2.	. Montante 1° piso "dirección x"	65
	16.1.3.	. Montante planta baja piso "dirección y"	67
	16.1.4.	. Montante planta baja "dirección x"	68
:	16.2.	Verificación montantes a flexión	70
	16.2.1.	. Montante 1° piso "dirección y"	70
	16.2.2.	. Montante 1° piso "dirección x"	72
	16.2.3.	. Montante planta baja "dirección y"	74
	16.2.4.	. Montante planta baja "dirección x"	76
	16.3.	Verificación montantes a corte	78
	16.3.1.	. Montante 1° piso "dirección y"	78
	16.3.2.	. Montante 1° piso "dirección x"	79
	16.3.3.	. Montante planta baja "dirección y"	79
	16.3.4.	. Montante planta baja "dirección x"	80
	16.4.	Verificación montantes a flexo-compresión	81
	16.4.1.	. Montante 1° piso "dirección y"	82
	16.4.2.	. Montante 1° piso "dirección x"	82
	16.4.3.	. Montante planta baja "dirección y"	83
	16.4.4.	. Montante planta baja "dirección x"	83
	16.5.	Verificación montantes a flexión y corte	83
	16.5.1.	. Montante 1°piso "dirección y"	84
	16.5.2.	. Montante 1° piso "dirección x"	84
	16.5.3.	. Montante planta baja "dirección y"	85
	16.5.4.	. Montante planta baja "dirección x"	85

16	.6.	Verificación viga reticulada cubierta componentes a tracción	85
	16.6.1	Cordón inferior	85
	16.6.2	Diagonal	86
16	.7.	Verificación viga reticulada cubierta componentes a compresión	87
	16.7.1	Cordón superior	87
	16.7.2	Montante	88
16	.8.	Verificación viga reticulada entrepiso componentes a tracción	90
	16.8.1	Cordón inferior	90
	16.8.2	Diagonal	91
16	.9.	Verificación viga reticulada entrepiso componentes a compresión	91
	16.9.1	Cordón superior	91
	16.9.2	Montante	93
16	.10.	Verificación correas	94
	16.10.	1. Correas de cubierta	94
	16.10.	2. Correas de entrepiso	96
16	.11.	Verificación flejes	98
	16.11.	1. Fleje primer piso	98
	16.11.	2. Fleje planta baja	98
16	.12.	Verificación escalera	99
16	.13.	Verificación uniones	100
	16.13.	1. Unión fleje superior	100
	16.13.	2. Unión fleje inferior	102
	16.13.	3. Unión soldada de montante a cordón de la viga reticulada	104
	16.13.	4. Unión soldada de diagonal a cordón	105
17.	PLA	TEA DE FUNDACIÓN	105
18.	ANC	CLAJES	118
19.	SIST	EMA DE CLIMATIZACIÓN	126
19	.1.	Zonificación	128
19	.2.	Unidades exteriores	130
19	.3.	Unidades interiores	131
19	4	Mando de control y regulación	132

20.	PAN	ELES SOLARES TÉRMICOS	. 132
2	0.1.	Principio de funcionamiento	. 132
2	0.2.	Elementos principales de la instalación	. 134
	20.2.1.	Captación solar	. 134
	20.2.2.	Intercambiador de calor	. 135
	20.2.3.	Acumulación solar	. 137
	20.2.4.	Sistema de apoyo	. 138
	20.2.5.	Sistema hidráulico	. 138
	20.2.6.	Sistema de regulación y control	. 140
2	0.3.	Ventajas	. 141
21.	CÓN	1PUTO	. 141
22.	HON	IORARIOS	. 143
23.	REF	RENCIAS	. 147

1. OBJETIVOS

- Profundizar el conocimiento de los distintos tipos estructurales.
- Demostrar habilidad para el diseño de estructuras de distintos materiales, profundizando aspectos propios de las estructuras metálicas, de hormigón armado y de madera.
- Comprender el comportamiento de estructuras complejas y desarrollar la creatividad en el proceso de diseño

2. DESCRIPCIÓN DEL PROYECTO

El proyecto elegido es un hospital de índole publica emplazado en el departamento de Lujan de Cuyo, esquina Taboada y Constitución a 100 metros de la avenida San Martín sobre un terreno de 9612m2.

Ubicación del terreno

La obra surge para poder satisfacer la necesidad de mejorar el sistema de salud pública de la provincia de Mendoza ante la emergencia sanitaria por el COVID-19.

Si bien se busca satisfacer a corto plazo la demanda por pacientes de COVID-19 también se busca en el largo plazo que el hospital sea un centro de diálisis, hemoterapia, y especializado en oncología.

Es importante resaltar que esto permitiría aliviar la demanda en los hospitales céntricos ya que la población de Lujan de Cuyo, Godoy Cruz y parte de Maipú serían los usuarios principales del establecimiento.

Un punto a considerar es que también se lograría una mejora en el tránsito hacia la ciudad y sería un buen incentivo para la pronta construcción de la etapa del metro tranvía hacia Lujan.

Cabe destacar que en la actualidad el departamento de Lujan de Cuyo cuenta con un hospital público compuesto solamente por consultorios, por lo cual no se vería contrapuesto con el proyecto elegido. Además la ubicación seleccionada es más accesible debido a que se encuentra en la zona céntrica del departamento y cercana a la futura extensión de la traza del metro tranvía.

3. SELECCIÓN DE ALTERNATIVAS

La premisa principal de esta obra es la ejecución rápida de la misma, por lo cual se evaluarán alternativas como construcciones metálicas, Steel-Frame u hormigón prearmado para poder seleccionar el método más conveniente para su correcta ejecución.

Como primer alternativa se tiene la construcción de una superestructura con perfiles metálicos obtenidos por cálculo y muros exteriores e interiores de revestimiento realizados mediante el método Steel Framing.

Luego como segunda alternativa se tiene el método de construcción Steel-Framing donde los perfiles de acero galvanizado constituyen la estructura del edificio.

Se decidió optar por la segunda alternativa para poder entender y aprender más sobre el método de construcción Steel-Framing ya que es un sistema que no hemos analizado con profundidad anteriormente y cada vez es más usado en el ámbito de la construcción.

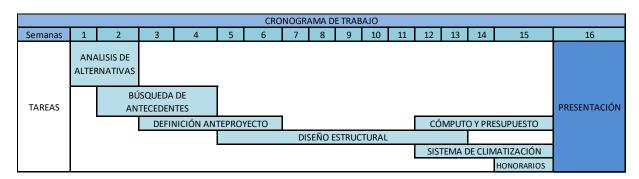
La construcción en seco permite rapidez de construcción, limpieza de obra, flexibilidad de diseño, nivel de terminación, agregando la facilidad de poder realizar en forma sencilla el pasaje de conductos para los servicios hospitalarios, la flexibilidad de poder transformar los espacios mediante construcciones que generan mínimas molestias y baja generación de polvo.

El hospital se asienta sobre una platea de H°A° la cual soporta tanto el peso como las cargas transmitidas por la estructura.

4. TAREAS A REALIZAR

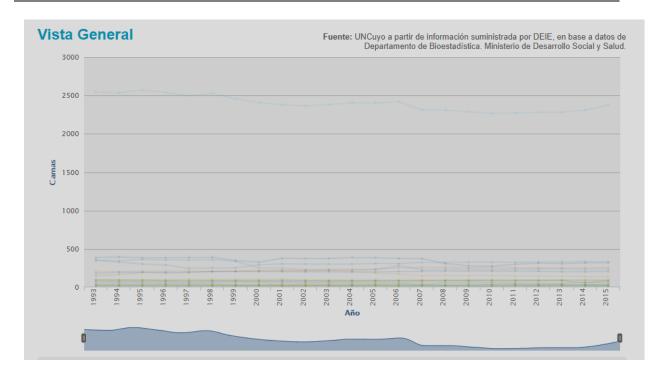
Una vez definido el proyecto las tareas a realizar son las siguientes:

- Estudio del terreno teniendo en cuenta la ubicación, topografía, antecedentes y condiciones de servicio.
- Diseño arquitectónico donde se define el anteproyecto y proyecto que contiene planos generales, de detalle y maquetas
- Diseño estructural donde se calcula la estructura necesaria capaz de resistir las solicitaciones a las que va a estar sometida durante su vida útil. Se define el método constructivo y los detalles.

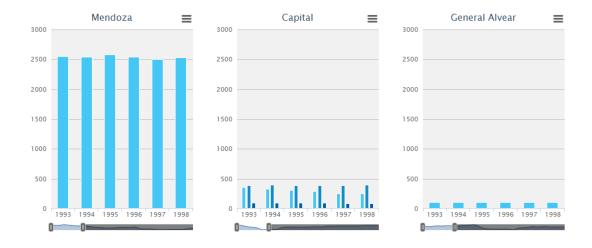

- Diseño de las instalaciones. Tiene en cuenta las instalaciones de gas, cloaca, provisión de agua fría y caliente, acondicionamiento térmico, telefonía, internet, alarmas, seguridad, entre otros.
- Documentos complementarios. Los mismos contienen especificaciones para la etapa de terminaciones, detalle de la calidad de los materiales, delimitación de responsabilidades, presupuesto, autorización de las conexiones por las empresas prestadoras de servicios, seguro contra incendio robo, etc.

Las tareas que vamos a realizar en el curso son:

- Diseño estructural
- Cómputo de materiales
- Instalación del sistema de climatización y utilización de paneles solares
- Presupuesto de honorarios profesionales


5. CRONOGRAMA

El cronograma tiene como fecha de inicio el 27/08/2020 y como fin el 3/12/2020, teniendo 16 semanas para la ejecución del trabajo.



6. ANTECEDENTES


En la actualidad la totalidad de camas disponibles para afrontar la situación de emergencia COVID es de menos de 2500 camas, donde en las siguientes imágenes se puede ver la discriminación por hospital y departamento junto con la variación del número de camas a lo largo de los años. Ante una suba de casos el sistema puede colapsar por lo que es necesario estar preparados a corto plazo mediante la incorporación del hospital en cuestión.

Por Departamento

Respecto a antecedentes de construcciones similares se tiene que en Febrero del presente año se realizó en Wuhan, China un hospital mediante el sistema Steel-Framing en un tiempo récord de 10 días donde fueron involucrados más de 10.000 obreros. En un inicio era de 50.000 metros cuadrados, luego pasó a ser de 75.000 metros y por último se llegó a casi 80.000 metros cuadrados. Ante el impulso de la pandemia, en solo 6 días, el área de construcción total del Hospital Leishenshan aumentó tres veces, y el número de camas pasó de 1.300 a casi 1.600. La referencia general en el lugar es la de los

hospitales levantados en los campo de batalla, que incluyen principalmente áreas de alojamiento médico, áreas de apoyo de atención médica y áreas auxiliares médicas.

Hospital en Wuhan, China

Luego si observamos antecedentes en el país se tiene que para contener la pandemia de COVID 19, el Ministerio de Obras Públicas construyó, en tiempo récord, 12 hospitales Modulares de Emergencia en distintos puntos de Conurbano Bonaerense, en Mar del Plata y en las provincias de Córdoba, Chaco y Santa Fe.

A través de la Oficina de las Naciones Unidas de Servicios para Proyectos (UNOPS), invirtió \$1.894 millones para la construcción y el equipamiento completo de estas unidades sanitarias escalables, sostenibles y resilientes, a partir de las directivas sanitarias del Ministerio de Salud.

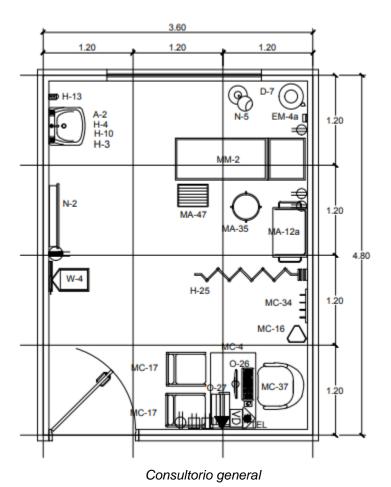
Los Hospitales Modulares de Emergencia (HME) están ubicados en los Municipios de Almirante Brown, Florencio Varela, Gral. Rodríguez, Hurlingham, Lomas de Zamora, Moreno, Quilmes, Tres de Febrero, Mar del Plata, Resistencia (Chaco), Córdoba capital y Granadero Baigorria (Santa Fe).

Son módulos de construcción rápida de 1.000 m2, escalables a través de la metodología de la construcción en seco y cuentan con certificación Normas ISO 9001/2015 de Calidad y Norma ISO 14001/2015 de Medio Ambiente.

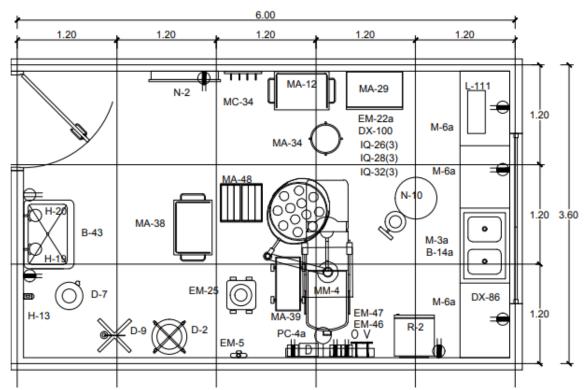
Estas nuevas unidades están siendo equipadas con un total de 840 camas de terapia e internación, 276 respiradores y 24 ventiladores de transporte. También, contarán con monitores multiparamétricos, ecógrafos portátiles, electrocardiógrafos y equipos de rayos X, entre otros.

Asimismo, funcionarán las 24 horas con un equipo de 100 trabajadores por cada hospital y, una vez que finalice la pandemia, quedarán para ser utilizados por la comunidad.

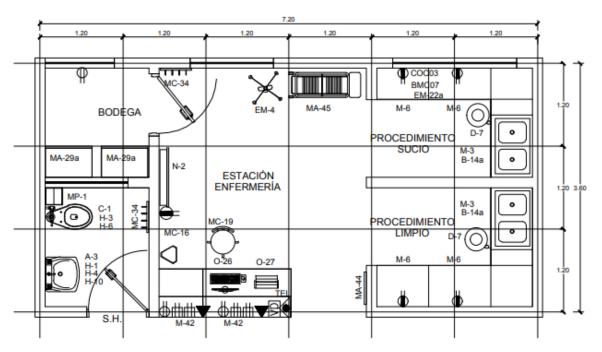
Hospitales modulares, Argentina

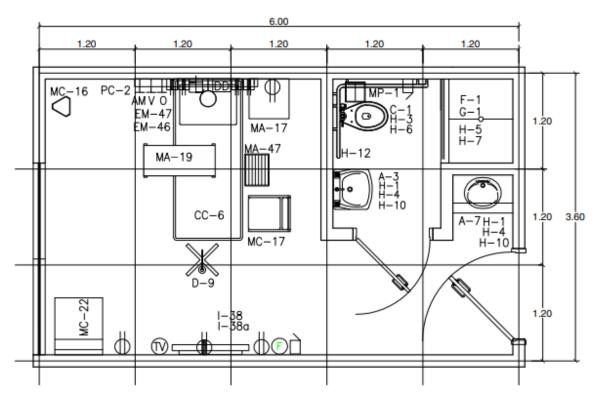

Para realizar un hospital se deben cumplir con ciertos requerimientos mínimos ya que los establecimientos de salud son instalaciones esenciales destinadas a proporcionar atención de salud con calidad y calidez. La obligatoriedad de cumplir adecuadamente con la atención de los usuarios del servicio tiene connotaciones técnicas, tecnológicas, administrativas y éticas; exigencias que se mantienen en todos los momentos y circunstancias. El establecimiento de salud requiere una amplia gama de recursos humanos, materiales, económicos y tecnológicos.

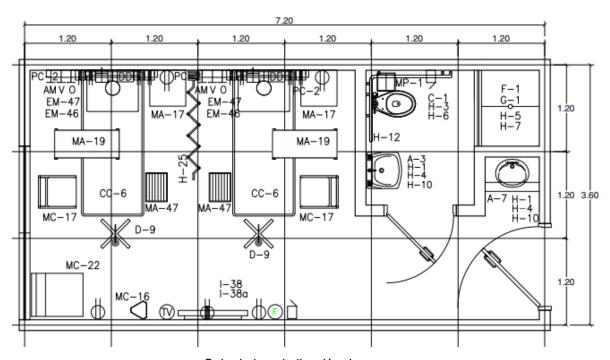
Establecer los parámetros técnicos estandarizados frente al diseño, construcción y dotación es esencial para optimizar los recursos económicos disponibles, en la inversión para disminuir el plazo de ejecución y asegurar su funcionamiento estructural, no

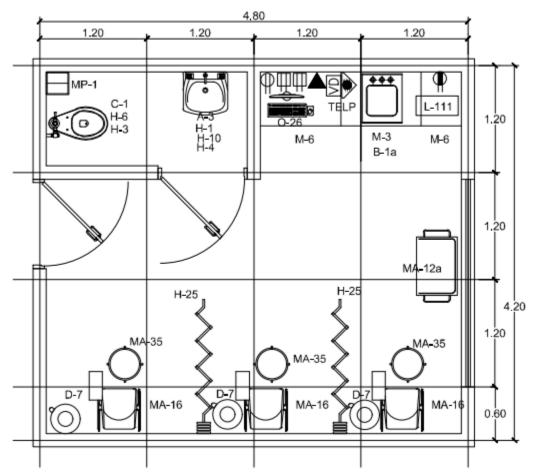

estructural y funcional, así como en garantizar no solamente la calidad de la atención sino también la seguridad del personal, pacientes y familiares frente a situación de amenaza sísmica y otras a las cuales se pueda ver enfrentado el establecimiento de salud.

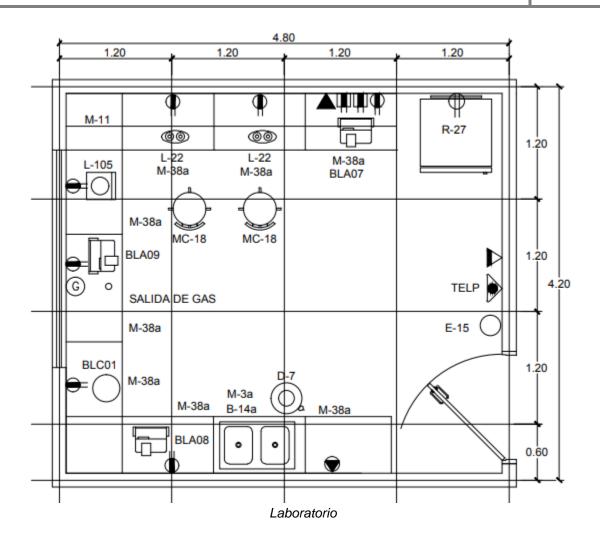
Por lo tanto para cumplir con lo mencionado anteriormente se tiene en cuenta una guía de diseño arquitectónico para establecimientos de salud que establece parámetros técnicos que orienten el planteamiento y la elaboración de diseños arquitectónicos que definan los requisitos mínimos de sus características ambientales.

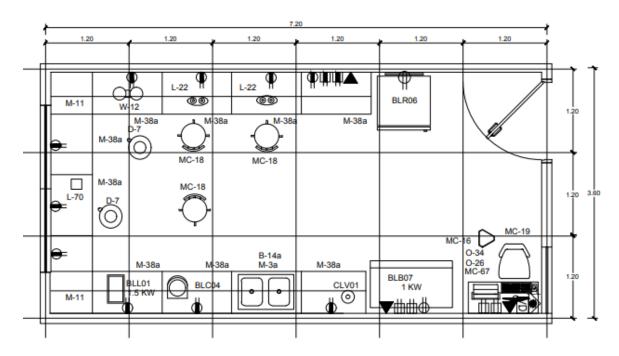



Página **15** de **147**

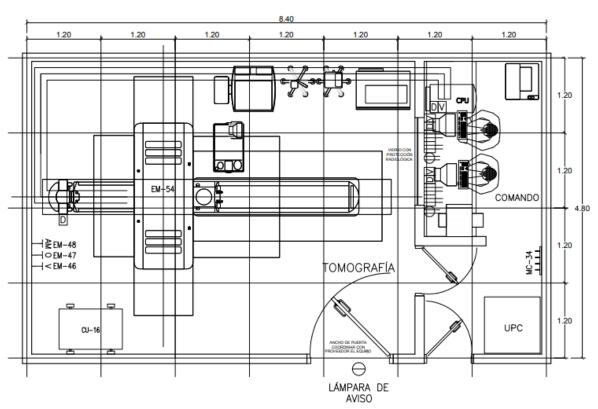

Procedimiento de cirugía menor


Estación enfermería

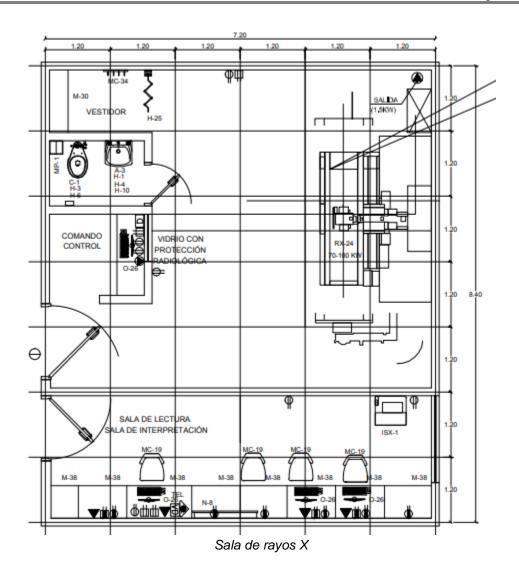

Sala de hospitalización una cama

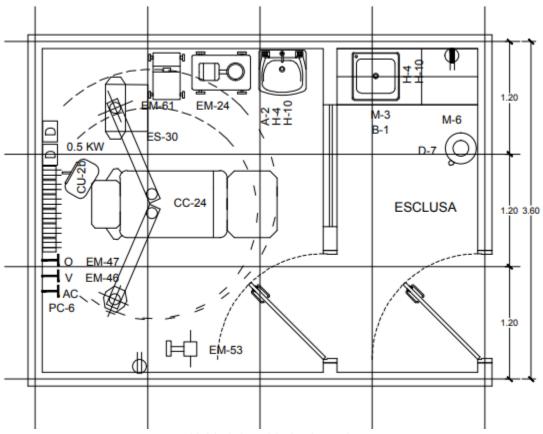


Sala de hospitalización dos camas

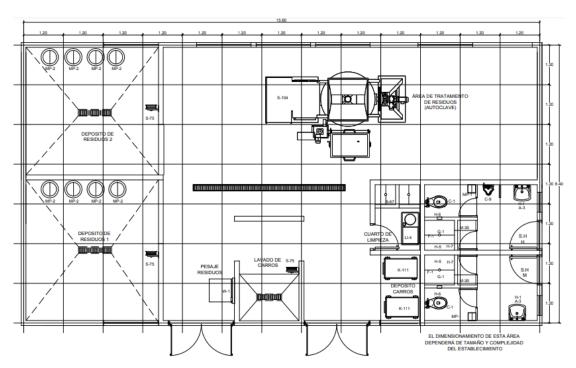


Sala de toma de muestras

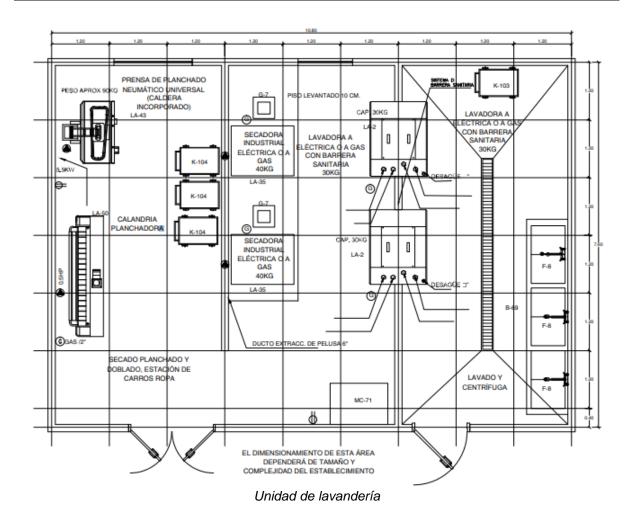


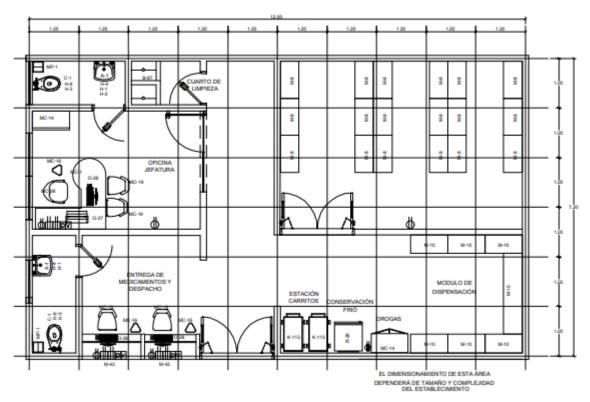


Unidad de inmunovirología

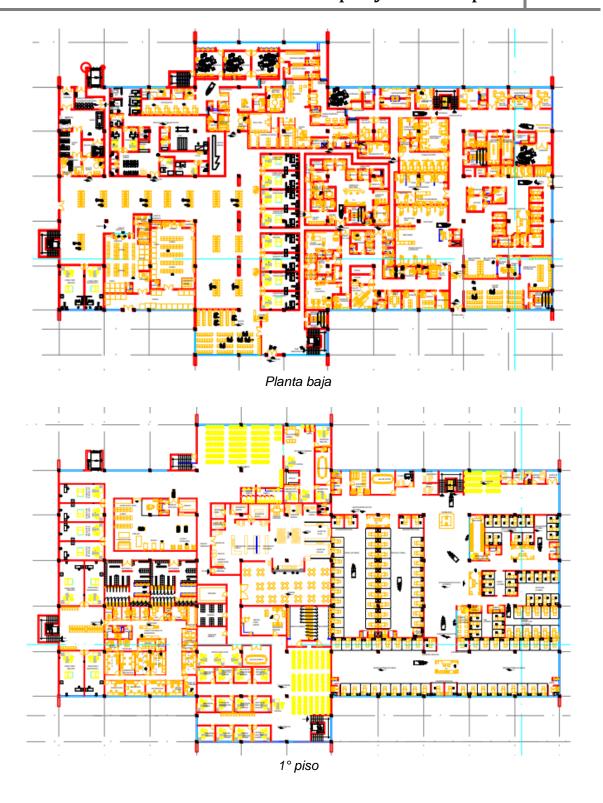


Unidad de tomografía

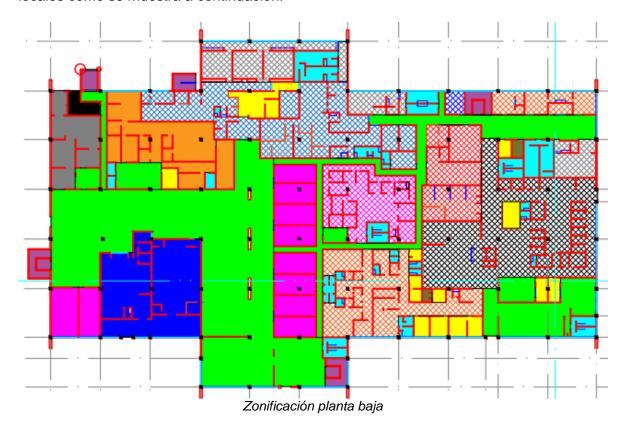


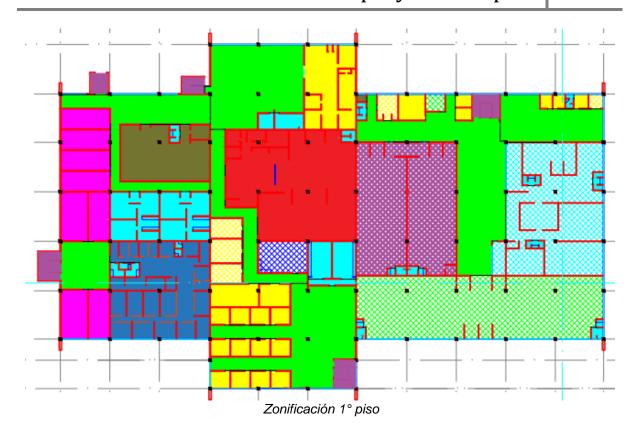

Unidad de cuidados intensivos

Unidad de tratamientos de residuos


Página 23 de 147

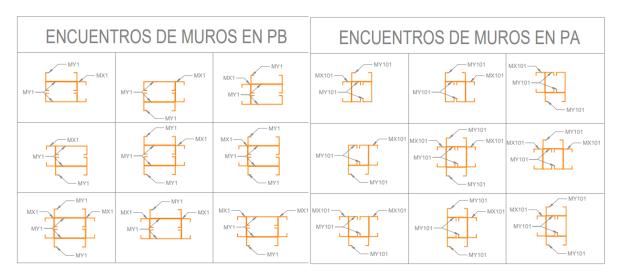
Unidad de farmacia


7. DEFINICIÓN ANTEPROYECTO


Una vez definida la alternativa a realizar y teniendo en cuenta lo investigado en la sección antecedentes se determina la arquitectura del hospital la cual se observa en las siguientes figuras.

8. ZONIFICACION

El siguiente paso es la zonificación de nuestro proyecto, para ello nos basamos en el proyecto arquitectónico y definimos la ocupación de cada uno de los locales o grupos de locales como se muestra a continuación.


Referencias de zonificación

9. GENERALIDADES SOBRE LA CONSTRUCCIÓN

La obra consiste en la construcción de un hospital público de 2 niveles.

La estructura de dicho establecimiento se realiza mediante el sistema de construcción Steel-Framing en el cual las cargas gravitatorias son resistidas por múltiples montantes similares separados 40cm, los que a su vez van revestidos por ambas caras por placas del madera. En este caso no se emplean las estructuras principales de vigas, columnas y/o pórticos principales que caracterizan a los edificios de acero tradicionales, por lo cual tampoco es posible contar con estos esqueletos de alta resistencia para resistir las acciones laterales por efecto de los sismos y los vientos. Los elementos que forman la barrera resistente lateral de la construcción son las placas OSB de revestimiento que poseen una apreciable resistencia y rigidez en su plano y generan un sistema estructural laminar de placas que tienen capacidad de resistir fuerzas laterales de sismo y viento. Sin embargo, al estar en una zona de alta sismicidad, las resistencias y/o rigideces de estas placas requieren de refuerzos, en los cuales se emplean arriostramientos de cintas de acero en forma de cruz de San Andrés detrás de los paneles y fijadas a los montantes y soleras. Las masas de la construcción se distribuyen en estos planos con la particularidad de que en general son masas reducidas, mucho menores que las de las construcciones tradicionales. Las características mencionadas le confieren a este sistema constructivo las siguientes tres ventajas: las fuerzas sísmicas inerciales son relativamente reducidas, las resistencias de los planos estructurales arriostrados contribuyen eficientemente a la estabilidad del conjunto y a su vez le confieren la ventaja adicional de una relativa alta rigidez.

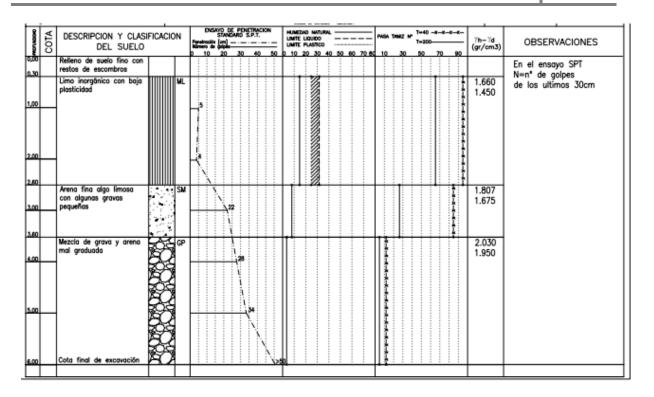
En este sistema los muros estan conformados por una estructura de perfiles galganizados unidos entre si por tornillos y aislaciones, estando los muros interiores recubiertos por placas de yeso y los exteriores por placas OSB y un revestimiento plastico. A su vez, las uniones de los muros se resuelven colocando mas de un perfil PGC para respetar la configuracion estructural de los paneles en ambas direcciones.

La cubierta en planta alta esta conformada por chapa sinusoidal, aislaciones termicas e hidrofugas, una placa de OSB de 9,5mm, una estructura de corrreas formadas por PGC y cielorraso suspendido. El entrepiso por su parte esta conformado por piso flotante, aislaciones acusticas, termicas e hidrofugas una placa de OSB de 15mm, una estructura de correas metalicas conformada por PGC y finalmente cielorraso suspendido. En los analisis de cargas se expresa detalladamente cada uno de los elementos utilizados como aislaciones.

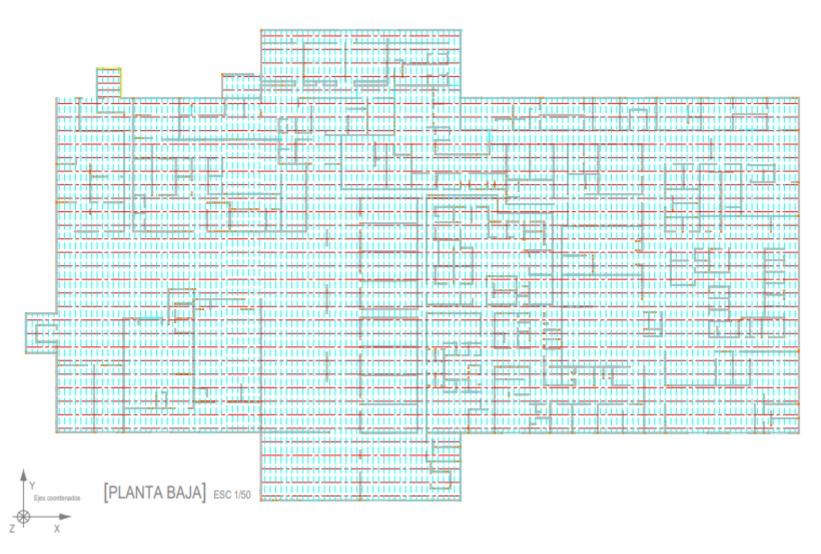
Por otro lado, el sistema de fundación diseñado consiste en plateas de H°A° unida a la estructura mediante un sistema de anclajes mecánicos y químicos.

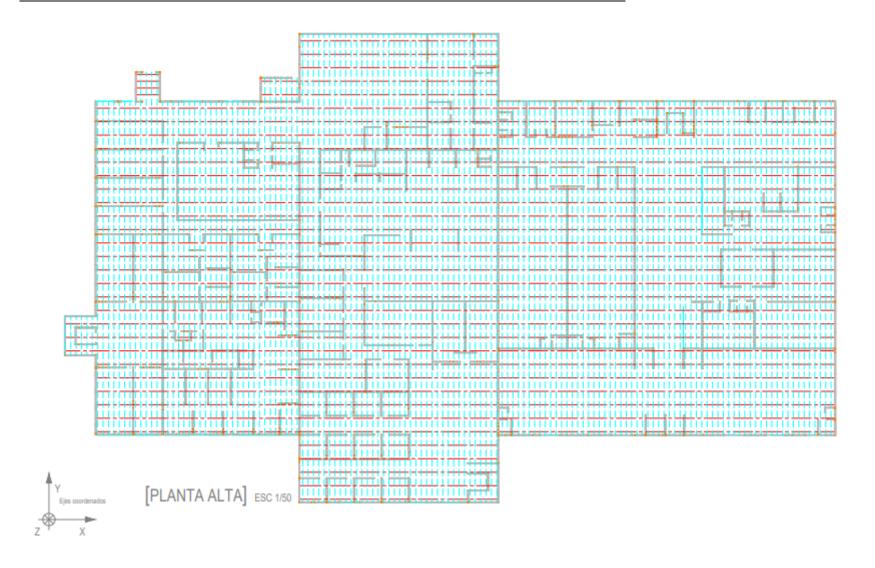
10. MATERIALES

10.1. Acero

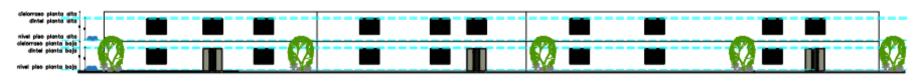

Para los distintos componentes estructurales tales como montantes y vigas se deben utilizar barras de acero de sección abierta conformadas en frío de calidad estructural de acuerdo a las normas IRAM-IAS. Se usará acero tipo F24 con tensión de fluencia de 235 MPa.

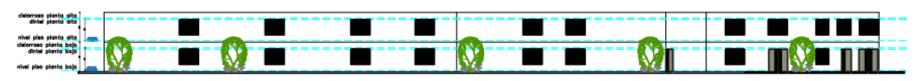
Para el armadura correspondiente a la platea de H°A° se deben utilizar barras de acero conformadas de dureza natural (ADN), superficie nervurada y características para tipo III DN, de acuerdo al reglamento CIRSOC 201 con una tensión de fluencia de 420 MPa.


10.2. Hormigón correspondiente a platea de fundación


Para la construcción de la platea de fundación se utiliza un hormigón H40 con resistencia característica de 40 MPa.

Las características geotécnicas del terreno se determinaron a partir del estudio de suelos realizado en el lugar de emplazamiento de obra.


11. PLANTAS DE ESTRUCTURA

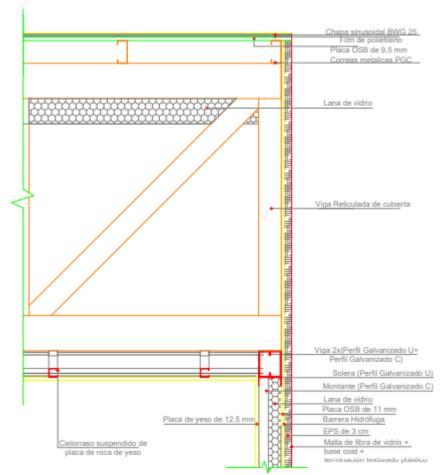


REFERENCIAS:					
Correas metalicas					
	Vigas metalicas				
		Muros			
my1		montantes en direccion y PB			
mx1		montantes en direccion x PB			
my101		montantes en direccion y PA			
mx101	J	montantes en direccion x PA			

VISTAS ARQUITECTONICAS **12.**

[VISTA SUR] ESC 1/50

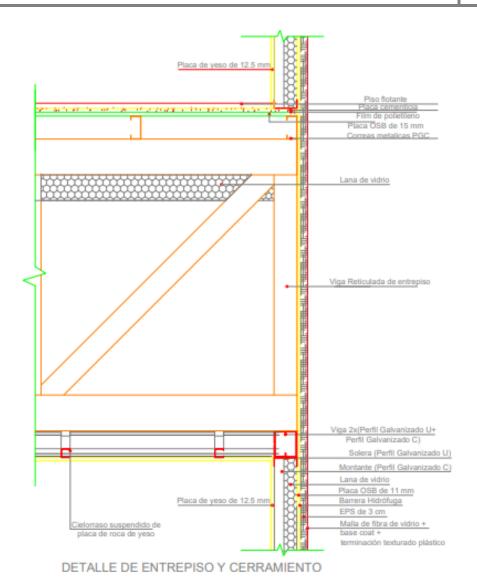
[VISTA NORTE] ESC 1/50


ANÁLISIS DE CARGAS **13.**

Para la determinación de las acciones sobre la construcción utilizamos las siguientes normas:

- CIRSOC 101 Reglamento Argentino de Cargas Permanentes y Sobrecargas Mínimas de diseño para Edificios y Otras Estructuras. Julio de 2005
- CIRSOC 102 Reglamento Argentino de Acción del Viento sobre las Construcciones. Julio de 2005.
- INPRES-CIRSOC 103 PARTE 1 Normas Argentinas para construcciones Sismorresistentes. Construcciones en General. Septiembre de 2013.
- CIRSOC 104 Acción de la Nieve y del Hielo sobre las Construcciones. Julio de 2005-
- CIRSOC 303 Reglamento Argentino de Elementos Estructurales de Acero de Sección Abierta conformados en frío. Julio de 2009.

13.1. Cargas permanentes (D)


Carga permanente D-Cubierta					
Materiales	Espesores (mm)	Espesores (m)	Densidad (m^3/kg)	Peso/m^2	
Chapa sinusoidal BWG 25	0,54	0,00	13611,11	7,35	
Aislante termico	0,00	0,00	0,00	0,00	
Aislacion hidrofuga	0,00	0,00	0,00	0,00	
Placa OSB	9,50	0,01	750,00	7,13	
Doble aislacion lana de vidroo	140,00	0,14	35,00	4,90	
Barrera de vapor	0,00	0,00	0,00	0,00	
Perfil omega	0,00	0,00	0,00	0,00	
Placa de Roca de yeso				12,00	
				31,375	kg/m^2
				0,31375	kN/m^2

DETALLE DE CUBIERTA Y CERRAMIENTO

Carga permanente D-Entrepiso						
Materiales Espesores (mm) Espesores (m) Densidad (m^3/kg) Peso/m^						
Piso flotante	12	0,012	1650	19,8		
Membrana Acustica	3	0,003	18	0,054		
Placa OSB 15mm	15	0,015	800	12		
Aislamiento acustico	25	0,025	100	2,5		
Rigidizacion horizontal	0	0	0	0		
Doble aislacion lana de vidrio	140	0,14	35	4,9		
Barrera de vapor	0	0	0	0		
Perfil omega	0	0	0	0		
Placa de yeso				12		
				51,25	kg/m^2	
				0,51	kN/m2	

Carga permanente D- paneles solares					
Paneles solares	0,11	kN/m2			

13.2. Cargas accidentales (L)

SOBRECARGA L					
Hospital (edificio público) 5 kN/m2					
SOBRECARGA Lr DE MANTENIMIENTO					
R1	1,00				
R2	1,00				
Lr	0.96	kN/m2			

13.3. Viento (W)

Para obtener las acciones de viento sobre la estructura se utiliza el método analítico.

PROCEDIMIEN	ITO D	E DISEÑO	•	OBSERVACIONES
Ubicación	Lu	uján de Cuyo,	Mendoza	
Velocidad básica del viento	V	39	m/s	
Factor de importancia	IV	1,	15	
Categoría de exposición		В		Se encuentra en área urbana con obstrucciones próximas
Coeficiente de exposición	Kz	CÁLCULO HO	JA AUXILIAR	
Factor topográfico	Kzt	2	1	Topografía homogénea
Factor de direccionalidad del viento	Kd	0,	85	

Dirección del viento	Ubicación de la pared	z (m)	q [N/m^2]	L/B	Ср	GfCp	Gcpi	Gcpi	p [N/m^2]	p [N/m^2]
		0	537,72	1,6	0,8	0,63	0,55	-0,55	23	657
		0,5	537,72	1,6	0,8	0,63	0,55	-0,55	23	657
		1	537,72	1,6	0,8	0,63	0,55	-0,55	23	657
		1,5	537,72	1,6	0,8	0,63	0,55	-0,55	23	657
		2	537,72	1,6	0,8	0,63	0,55	-0,55	23	657
		2,5	537,72	1,6	0,8	0,63	0,55	-0,55	23	657
	Barlovento	3	537,72	1,6	0,8	0,63	0,55	-0,55	23	657
Oeste a Este/Este a	Ballovelito	3,5	537,72	1,6	0,8	0,63	0,55	-0,55	23	657
Oeste		4	537,72	1,6	0,8	0,63	0,55	-0,55	23	657
		4,5	537,72	1,6	0,8	0,63	0,55	-0,55	23	657
		5	537,72	1,6	0,8	0,63	0,55	-0,55	23	657
		5,5	565,06	1,6	0,8	0,63	0,55	-0,55	40	674
		6	565,99	1,6	0,8	0,63	0,55	-0,55	41	675
		6,4	576,52	1,6	0,8	0,63	0,55	-0,55	47	681
	Sotavento	-	576,52	1,6	-0,38	-0,30	0,55	-0,55	-490	144
	Laterales	-	576,52	1,6	-0,7	-0,55	0,55	-0,55	-636	-2
		0	537,72	0,6	0,8	0,63	0,55	-0,55	23	657
		0,5	537,72	0,6	0,8	0,63	0,55	-0,55	23	657
		1	537,72	0,6	0,8	0,63	0,55	-0,55	23	657
		1,5	537,72	0,6	0,8	0,63	0,55	-0,55	23	657
		2	537,72	0,6	0,8	0,63	0,55	-0,55	23	657
		2,5	537,72	0,6	0,8	0,63	0,55	-0,55	23	657
	Barlovento	3	537,72	0,6	0,8	0,63	0,55	-0,55	23	657
Norte a Sur/Sur a	Ballovelito	3,5	537,72	0,6	0,8	0,63	0,55	-0,55	23	657
Norte		4	537,72	0,6	0,8	0,63	0,55	-0,55	23	657
		4,5	537,72	0,6	0,8	0,63	0,55	-0,55	23	657
		5	537,72	0,6	0,8	0,63	0,55	-0,55	23	657
		5,5	565,06	0,6	0,8	0,63	0,55	-0,55	40	674
		6	565,99	0,6	0,8	0,63	0,55	-0,55	41	675
		6,4	576,52	0,6	0,8	0,63	0,55	-0,55	47	681
	Sotavento	-	576,52	0,6	-0,5	-0,39	0,55	-0,55	-545	89
	Laterales	-	576,52	0,6	-0,7	-0,55	0,55	-0,55	-636	-2

13.4. Nieve (S)

Carga de nieve S										
Ubicación	Luján de Cuyo, Mendoza									
Carga a nivel de terreno	pg 0,3 kN/m2									
Categoría de exposición	В									
Factor de exposición del terreno	Ce	0,9								
Factor de importancia	IV	1,2								
Condición térmica de la cubierta	Ct	1								
Carga de nieve sobre cubierta plana	pf	0,23	kN/m2							

13.5. Sismo (E)

Para el cálculo de las fuerzas sísmicas utilizamos el método estático donde la acción sísmica se considera equivalente a la acción de un sistema de fuerzas, paralelo a la dirección analizada y aplicada en los centros de las masas que conforman el modelo estructural.

Se considera un sistema sismorresistente compuesto por riostras diagonales en ambas caras de los montantes y revestimientos estructurales que consisten en una placa OSB.

El período fundamental se extrae del modelo siendo T=0,24s.

VALORES ESPECTRALES CALCULADOS

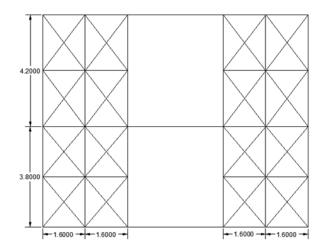
MODO	w	Т
	[RAD/SEG]	[SEG]
1	26.06	0.24113
2	26.06	0.24113
3	30.76	0.20426
4	84.28	0.07417
5	84.28	0.07457
6	101.83	0.06164

El coeficiente sísmico adoptado es:

Cálculo coeficiente sísmico								
Ubicación: Luján de Cu	yo, Mendoza							
Zona sísmica	nica 4							
Función: Grupo A0 (hospital)	γr	1,5	ad					
Sitio		Sd						
Factor de comportamiento	R	1,5	ad					
Altura	Н	6,4	m					
Coeficientes para la determinación del período fundamental aprox.	Cr	0,0488	ad					
Tundamental aprox.	Х	0,75	ad					
Período fundamental	T	0,24	S					
Ordenada del espectro elástico de aceleración	Sa	1	g					
Coeficiente sísmico de diseño C=0,8*as*Nv/R	С	0,2	ad					

Cabe destacar que no pueden emplearse partes que, aunque sean de acero, se pandean ya sea en forma general o localmente, ya que el pandeo de las piezas de acero representa una rotura frágil que excluye la posibilidad de ductilidad. Teniendo en cuenta que las estructuras de Steel-Framing se forman de perfiles delgados con posibilidades de pandeos locales y generales, la modalidad dúctil de respuesta estructural no se autoriza en este tipo de estructuras y por lo tanto se emplea un factor R=1,5. Es por esto que cuando una estructura no dispone de mecanismos propios para generar esos puntos de plastificación que disipen la energía en forma confiable no debe emplearse el método de las ductilidades y la estructura debe resistir plenamente las fuerzas sísmicas espectrales (R=1,5), con un adecuado margen de seguridad respecto de la rotura o del pandeo.

Una vez calculado dicho coeficiente y obtenido el peso total de la estructura, se procede a realizar la distribución de fuerzas en altura a partir del corte basal.


	Metodo Estático													
NIVEL	hi [m]	Carga Permanente Estructural [KN]	L [kN]	Carga de Nieve [kN]	Q nivel (con 0,5L) [KN]	W total [KN]	Сх	Су	Vox=Cx* W [kN]	Voy=Cy* W [kN]	Wi*hi	α= Wi*hi/ ∑Wi*hi	Fix=α*Vx [kN]	Fiy=α*Vy [kN]
P1	6,4	4866,95	5856	1403	8777,05	20424	2	0.3	F004 0	E004 0	56173	0,46	2704,18	2704,18
PB	3,2	5397,00	30500	0	20647,00	29424	0,2	0,2	5884,8	5884,8	66070	0,54	3180,63	3180,63
										Total	122244			

El largo requerido de muros arriostrados se determina por cálculo a partir de una forma de verificación sísmica basada en las rigideces.

Los paneles del tipo OSB, o de madera multilaminada (terciados) son los que se emplean en los revestimientos del Steel Framing.

Estos revestimientos colaboran en la estabilidad y resistencias del conjunto. Para conocer la participación de estos paneles es conveniente evaluar su rigidez en el plano del panel y compararla con la que ofrecen las cruces de cintas tipo riostras que se emplean en el sistema. La comparación de rigideces permite al ingeniero estructural determinar las fuerzas de corte que asume cada uno de los paneles y de este modo verificar si la estructura resiste las fuerzas laterales del sismo.

Para poder comparar las rigideces con la de los arriostramientos de cintas de acero, haremos una evaluación de un muro de planta baja de 10 m de largo y 3,2 m de alto, con flejes dispuestos a ambos lados del muro y como se muestra en la figura.

En este ejemplo será posible verificar, en función de las rigideces respectivas, los porcentajes de la carga horizontal de 1 KN que serán resistidos por los paneles y por las diagonales de acero.

Se tendrán en cuenta solo las deformaciones principales de cada sistema: en los paneles, la deformación por corte en su plano y en las riostras, el alargamiento de las diagonales traccionadas.

El valor de Qo contiene un coeficiente de seguridad de 1,5

Revestimiento	Qo					
Placas de yeso cartón	107,0 KN /pie = 3,51 KN/cm					
Placas OSB	53,4 KN /pie = 1,75 KN/cm					
Placas de multilaminado	32,0 KN /pie = 1,05 KN/cm					
Placas de multilaminado especial	64,1 KN /pie = 2,10 KN/cm					

Placas de yeso cartón	3,51 x 3	= 1	0.03	para placas dobles
OSB	1,75		5, 25	para piasas assiss
Terciado común	1,05		3, 15	
Terciado especial	2, 10	=	6,30	
La rigidez de corte Qo' =	= (P / b) x (Δ / a)	= P	ха
			Δ	x b

$$\triangle = \frac{Q_0 * a}{P * b}$$

$$\triangle = \frac{0,16 * 4,2}{5,25 * 1,60} = 0,08$$

$$K1 = \frac{1}{0.08} = 12,5 \, kN/cm$$

El panel cuenta con ocho flejes en ambas caras del muro, 16 flejes en total. Se adopta a fines de cálculo una cinta de acero de $60 \times 0.9 \text{ mm} = 0.54 \text{ cm} 2$ de área, la que al estirarse genera un desplazamiento lateral de 0.0293

$$K2 = \frac{1}{0.0293} = 34,13 \, kN/cm$$

$$K1 + K2 = 46,63 \, kN/cm$$

Distribución de corte en porcentajes

- ✓ Paneles OSB 26%
- ✓ Flejes de acero 72%

TABLA X.3.4. Resistencias nominales de paneles (de un solo lado)

Tipo de panel	Espesor	Tornillos	Resistencia	Nominal	Admisible
Yeso - Cartón	1/2"	4 – 12"	295 lb/ft	4,39 KN/m	1,76 KN/m
Terciado	15/32"	6 – 12"	780 lb/ft	11,6 KN/m	4,64 KN/m
OSB	7/16"	6 – 12"	700 lb/ft	10,4 KN/m	4,16 KN/m

Fuerza sísmica paneles PB= 0,26 *3182 kN = 701 kN

Fuerza sísmica paneles P1= 0,26 * 2696 kN = 827 kN

Longitud mínima muros P1 = 701 kN/(4,16 kN*2) = 84 m

Longitud mínima muros PB = 827 kN / (416 kN*2)= 100 m

La longitud que se tiene de los muros portantes es mayor a la longitud mínima requerida por la resistencia de las placas OSB.

Y la longitud de muros portantes propuesta para ambas plantas es de 250m en x y 240 en y, supera ampliamente el mínimo necesario.

13.5.1. Verificación de regularidad en planta y altura

En la verificación de las condiciones de regularidad se considerarán los efectos torsionales mediante una excentricidad adicional del 5% de la longitud de la planta perpendicular a la dirección de estudio. Dicho valor fue incorporado en el software de modelación a la hora de obtener las solicitaciones.

A partir de la siguiente tabla se puede observar que al evaluar las regularidades se obtiene que en la presente estructura se tiene regularidad en planta y en altura.

	Estado con Ex+												
Nivel	Desplazamientos Altura Drifts Δp r		*	Regularidad en	Δp/Δp+1	Regularidad en							
MIVE	Eje 1	Eje 2	de Piso	Eje 1	Eje 2	Δр	•	planta	Δρ/Δρ+1	altura			
0	0	0	0	0	0	0	0	=	-	-			
1	0,0096	0,0105	3,8	0,0025	0,0028	0,0026	1,05	REGULAR	0,39	REGULAR			
2	0,0402	0,0372	4,2	0,0073	0,0063	0,0068	1,07	REGULAR	0,01	REGULAR			

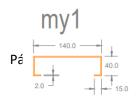
	Estado con Ex-												
Nivel Desplazamiento		Altura	Dri	ifts	۸n	r	Regularidad en Δp/Δp+1		Regularidad en				
Mivei	Eje 1	Eje 2	de Piso	Eje 1	Eje 2	Δр	ľ	planta	Δρ/Δρ+1	altura			
0	0	0	0	0	0	0	0	=	-	-			
1	0,0096	0,0104	3,8	0,0025	0,0027	0,0026	1,04	REGULAR	0,52	REGULAR			
2	0,0296	0,0326	4,2	0,0048	0,0053	0,0050	1,05	REGULAR	0,01	REGULAR			

	Estado con Ey+											
Nivel	Desplazamientos Altura		Dr	ifts	Δр	r	Regularidad en	Δp/Δp+1	Regularidad en			
MIVE	Eje A	Eje B	de Piso	Eje A	Eje B	Δρ	'	planta	Δρ/Δρ+1	altura		
0	0	0	0	0	0	0	0	-	-	-		
1	0,0251	0,0211	3,8	0,0066	0,0055	0,0061	1,09	REGULAR	1,23	REGULAR		
2	0,0468	0,0407	4,2	0,0052	0,0047	0,0049	1,05	REGULAR	0,00	REGULAR		

					Esta	do con Ey	-					
Nivel	Desplaz	amientos	Altura	Dr	ifts	Δр	r	Regularidad en	Δp/Δp+1	Regularidad en		
Mivei	Eje A Eje E		de Piso	Eje A Eje E		Δр	•	planta	Δρ/Δρ+1	altura		
0	0	0	0	0 0		0	0	-	-	-		
1	0,0211	1 0,0249 3,8 0,0056		0,0065	0,0060	1,08	REGULAR	0,92	REGULAR			
2	0,0477	0,0535	4,2	0,0063	0,0068	0,0066	1,04	REGULAR	0,01	REGULAR		

14. **DIMENSIONAMIENTO**

La resistencia requerida de la estructura y de sus distintos componentes estructurales se determinará a partir de la combinación de acciones mayoradas más desfavorable (combinación crítica). Se tendrá en cuenta que muchas veces la mayor resistencia requerida resulta de una combinación en que una o más acciones no están actuando.


En cada elemento estructural se analizan las siguientes combinaciones de cargas:

COMBINACIÓN DE ACCIONES PARA ELU
Según principios del Método por Estados Límites (LRFD) CIRSOC 303-2013
1,4D
1,2D+1,6L+0,5Lr
1,2D+1,6L+0,5S
1,2D+1,6Lr+0,5L
1,2D+1,6S+0,5L
1,2D+1,6Lr+0,8W
1,2D+1,6S+0,8W
1,2D+1,6W+0,5L+0,5Lr
1,2D+1,6W+0,5L+0,5S
1,2D+1E+0,5(L+Lr)+0,7S
0,9D+1,6W
0,9D+1E

14.1. Montantes 1° piso dirección "y"

CARGAS	CARGAS											
CARGAS PERMANENT												
Peso propio muro	Cirsoc 101-2005											
CARGAS VARIABLE	Peso propio muro 0,7 kN/m2 CARGAS VARIABLES											
Carga de viento Wx	0,68	kN/m2	Cirsoc 102-2005									

COMBINACIÓ	N DE ACCIONE	S PARA ELU		
Según principios del Método p	or Estados Lín	nites (LRFD) (CIRSOC 303-2013	3
	AXIAL		HORIZONTAL	
1,4D	0,98	kN/m2	0,00	kN/m2
1,2D+1,6L+0,5Lr	0,84	kN/m2	0,00	kN/m2
1,2D+1,6L+0,5S	0,84	kN/m2	0,00	kN/m2
1,2D+1,6Lr+0,5L	0,84	kN/m2	0,00	kN/m2
1,2D+1,6S+0,5L	0,84	kN/m2	0,00	kN/m2
1,2D+1,6Lr+0,8W	0,84	kN/m2	0,54	kN/m2
1,2D+1,6S+0,8W	0,84	kN/m2	0,54	kN/m2
1,2D+1,6W+0,5L+0,5Lr	0,84	kN/m2	1,09	kN/m2
1,2D+1,6W+0,5L+0,5S	0,84	kN/m2	1,09	kN/m2
1,2D+1E+0,5(L+Lr)+0,7S	0,84	kN/m2	0,00	kN/m2
0,9D+1,6W	0,63	kN/m2	1,09	kN/m2
0,9D+1E	0,63	kN/m2	0,00	kN/m2
Carga última qu	0,98	kN/m2	1,09	kN/m2

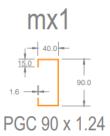
CÁLCULO MOMENTO MÁXIMO	Y REACCIONE	S
ongitud máxima de montante entre apoyo	3,2	m
Ancho de influencia	0,4	m
Carga uniformemente lineal de viento	1,09	kN/m
Axial montante+Reacción última cubierta	5,61	kN
Momento Máximo	1,39	kNm
Reacción/Corte máximo	1,74	kN

A partir de la siguiente tabla se selecciona un perfil de acero galvanizado que verifique con la carga de viento y carga axial obtenidas.

CARGA DE VIENTO (kN/m²)

_																														
		0			0.25			0.50			0.75			1.00			1.50			2.00			2.50			3.00			3.50	
esp. (mm)	0.89	1.24	1.60	0.89	1.24	1.60	0.89	1.24	1.60	0.89	1.24	1.60	0.89	1.24	1.6	0.89	1.24	1.60	0.89	1.24	1.60	0.89	1.24	1.60	0.89	1.24	1.60	0.89	1.24	1.60
long.													SE	EPAR	ACI	ÓN 4	00 n	ım												\dashv
2.40	13.17	20.52	26.06	11.58	18.82	24.30	10.18	17.28	22.67	8.93	15.85	21.16	7.79	14.53	19.74	5.73	12.10	17.12	3.90	9.89	14.73	1.36	7.86	12.52		5.85	10.45		2.83	8.49
2.60	12.87	20.06	25.46	10.92	17.96	23.27	9.32	16.14	21.34	7.93	14.52	19.59	6.68	13.03	17.98	4.49	10.37	15.08	2.19	8.01	12.49		5.69	10.12		2.69	7.93			5.88
2.70	12.71	19.82	25.15	10.57	17.50	22.71	8.88	15.55	20.63	7.43	13.83	18.77	6.14	12.28	17.08	3.89	9.53	14.07	1.19	7.02	11.40		4.65	8.97		0.77	6.74			4.03
3.00	12.20	19.03	24.13	9.46	15.98	20.88	7.54	13.68	18.37	5.96	11.75	16.25	4.60	10.05	14.37	2.21	7.12	11.12		4.59	8.31			5.79			2.06			
3.30	11.62	19.60	22.99	8.29	14.33	18.84	6.24	11.78	16.03	4.61	9.60	13.75	3.23	7.76	11.79		4.65	8.44		0.88	5.59			1.77						\Box
3.60	11.00	17.22	21.76	7.15	12.46	16.71	5.06	9.70	13.75	3.43	7.57	11.43	2.06	5.77	9.45		2.75	6.11			3.13									\Box
4.20	9.58	14.88	19.78	5.12	8.85	12.62	3.11	6.32	9.65	1.57	4.38	7.37		2.75	5.45			2.23												
4.80	7.95	11.49	15.17	3.54	6.13	8.89	1.70	3.91	6.29		2.21	4.29			2.61															
5.40	6.30	9.08	11.99	2.36	4.32	6.41	0.73	2.34	4.09		0.77	2.32																		
6.00	5.10	7.36	9.71	1.56	3.07	4.69		1.29	2.60			1.01																		

PERFIL SELECCIONADO											
Montante P1 dirección y	Perfil PGC 90x1.60										


Resiste	ncia axial	¿Verifica?	Resistenc	¿Verifica?		
8,44	8,44 kN		1,5	kN/m2	VERIFICA	

14.2. Montantes 1° piso dirección "x"

CARGAS			Bibliografía									
CARGAS PERMANEN												
Peso propio muro	Cirsoc 101-2005											
CARGAS VARIABLE	Peso propio muro 0,7 kN/m2 CARGAS VARIABLES											
Carga de viento Wy												

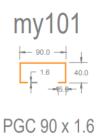
COMBINACIÓ	N DE ACCIONE	S PARA ELU		
Según principios del Método p	or Estados Lín	nites (LRFD) (CIRSOC 303-2013	
	AXIAL		HORIZONTAL	
1,4D	0,98	kN/m2	0,00	kN/m2
1,2D+1,6L+0,5Lr	0,84	kN/m2	0,00	kN/m2
1,2D+1,6L+0,5S	0,84	kN/m2	0,00	kN/m2
1,2D+1,6Lr+0,5L	0,84	kN/m2	0,00	kN/m2
1,2D+1,6S+0,5L	0,84	kN/m2	0,00	kN/m2
1,2D+1,6Lr+0,8W	0,84	kN/m2	0,54	kN/m2
1,2D+1,6S+0,8W	0,84	kN/m2	0,54	kN/m2
1,2D+1,6W+0,5L+0,5Lr	0,84	kN/m2	1,09	kN/m2
1,2D+1,6W+0,5L+0,5S	0,84	kN/m2	1,09	kN/m2
1,2D+1E+0,5(L+Lr)+0,7S	0,84	kN/m2	0,00	kN/m2
0,9D+1,6W	0,63	kN/m2	1,09	kN/m2
0,9D+1E	0,63	kN/m2	0,00	kN/m2
Carga última qu	0,98	kN/m2	1,09	kN/m2

CÁLCULO MOMENTO MÁXIMO Y	REACCIONES	
Longitud máxima de montante entre apoyos	3,2	m
Ancho de influencia	0,4	m
Carga uniformemente lineal de viento	1,09	kN/m
Axial montante	1,25	kN
Momento Máximo	1,39	kNm
Reacción/Corte máximo	1,74	kN

CARGA DE VIENTO (kN/m2)

		_								0.75							4 84	_							2.00				3.50		
		0			0.25		l	0.50			0.75			1.00			1.50			2.00			2.50			3.00			3.50		
esp.				L			L																								
(mm)	0.89	1.24	1.60	0.89	1.24	1.60	0.89	1.24	1.60	0.89	1.24	1.60	0.89	1.24	1.6	0.89	1.24	1.60	0.89	1.24	1.60	0.89	1.24	1.60	0.89	1.24	1.60	0.89	1.24	1.60	
long. (m)	SEFARACION 400 mm																														
2.40	13.17	20.52	26.06	11.58	18.82	24.30	10.18	17.28	22.67	8.93	15.85	21.16	7.79	14.53	19.74	5.73	12.10	17.12	3.90	9.89	14.73	1.36	7.86	12.52		5.85	10.45		2.83	8.49	
2.60	12.87	20.06	25.46	10.92	17.96	23.27	9.32	16.14	21.34	7.93	14.52	19.59	6.68	13.03	17.98	4.49	10.37	15.08	2.19	8.01	12.49		5.69	10.12		2.69	7.93			5.88	
2.70	12.71	19.82	25.15	10.57	17.50	22.71	8.88	15.55	20.63	7.43	13.83	18.77	6.14	12.28	17.08	3.89	9.53	14.07	1.19	7.02	11.40		4.65	8.97		0.77	6.74			4.03	
3.00	12.20	19.03	24.13	9.46	15.98	20.88	7.54	13.68	18.37	5.96	11.75	16.25	4.60	10.05	14.37	2.21	7.12	11.12		4.59	8.31			5.79			2.06				
3.30	11.62	19.60	22.99	8.29	14.33	18.84	6.24	11.78	16.03	4.61	9.60	13.75	3.23	7.76	11.79		4.65	8.44		0.88	5.59			1.77							
3.60	11.00	17.22	21.76	7.15	12.46	16.71	5.06	9.70	13.75	3.43	7.57	11.43	2.06	5.77	9.45		2.75	6.11			3.13										
4.20	9.58	14.88	19.78	5.12	8.85	12.62	3.11	6.32	9.65	1.57	4.38	7.37		2.75	5.45			2.23													
4.80	7.95	11.49	15.17	3.54	6.13	8.89	1.70	3.91	6.29		2.21	4.29			2.61																
5.40	6.30	9.08	11.99	2.36	4.32	6.41	0.73	2.34	4.09		0.77	2.32																			
6.00	5.10	7.36	9.71	1.56	3.07	4.69		1.29	2.60			1.01																			

PERFIL SE	LECCIONADO
Montante P1 dirección x	Perfil PGC 90x1.24


Resistencia axial		¿Verifica?	Resisten	¿Verifica?	
4,65	kN	VERIFICA	1,5	kN/m2	VERIFICA

14.3. Montantes planta baja piso dirección "y"

	Bibliografía					
Pe	Peso propio muro 0,7 kN/m2					
Car	ga de viento Wx	0,66	kN/m2	Cirsoc 102-2005		

COMBINACIÓN DE ACCIONES PARA ELU									
Según principios del Método por Estados Límites (LRFD) CIRSOC 303-2013									
	AXIAL		HORIZONTAL						
1,4D	0,98	kN/m2	0,00	kN/m2					
1,2D+1,6L+0,5Lr	0,84	kN/m2	0,00	kN/m2					
1,2D+1,6L+0,5S	0,84	kN/m2	0,00	kN/m2					
1,2D+1,6Lr+0,5L	0,84	kN/m2	0,00	kN/m2					
1,2D+1,6S+0,5L	0,84	kN/m2	0,00	kN/m2					
1,2D+1,6Lr+0,8W	0,84	kN/m2	0,53	kN/m2					
1,2D+1,6S+0,8W	0,84	kN/m2	0,53	kN/m2					
1,2D+1,6W+0,5L+0,5Lr	0,84	kN/m2	1,05	kN/m2					
1,2D+1,6W+0,5L+0,5S	0,84	kN/m2	1,05	kN/m2					
1,2D+1E+0,5(L+Lr)+0,7S	0,84	kN/m2	0,00	kN/m2					
0,9D+1,6W	0,63	kN/m2	1,05	kN/m2					
0,9D+1E	0,63	kN/m2	0,00	kN/m2					
Carga última qu	0,98	kN/m2	1,05	kN/m2					

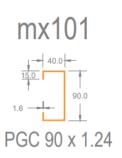
CÁLCULO MOMENTO MÁXIMO Y	REACCIONES	
Longitud máxima de montante entre apoyos	3,2	m
Ancho de influencia	0,4	m
Carga uniformemente lineal de viento	1,05	kN/m
Axial montante+Reacción última	24.00	kN
entrepiso+Reacción montante planta alta	24,09	KIN
Momento Máximo	1,35	kNm
Reacción/Corte máximo	1,68	kN

Al tener mayores solicitaciones se opta por un perfil de acero galvanizado de mayor altura seleccionado de la siguiente tabla.

CARGA DE VIENTO (kN/m²)

esp.		0	1			0.2	25			0.	50			0.1	75			1.0	00			1.	50			2.	00	
(mm)	0.89	1.24	1.60	2.00	0.89	1.24	1.60	2.00	0.89	1.24	1.60	2.00	0.89	1.24	1.60	2.00	0.89	1.24	1.60	2.00	0.89	1.24	1.60	2.00	0.89	1.24	1.60	2.00
long. (m)		SEPARACIÓN 400 mm																										
2.40	14.35	26.22	36.79	48.23	13.45	25.12	35.57	46.95	12.58	24.05	34.38	45.70	11.74	23.01	33.22	44.47	10.91	22.00	32.09	43.26	9.33	20.03	29.89	40.90	7.81	18.15	27.77	38.62
2.60	14.20	25.88	36.29	47.58	13.12	24.55	34.80	46.02	12.09	23.27	33.37	44.50	11.10	22.03	31.98	43.03	10.14	20.84	30.64	41.59	8.32	18.56	28.07	38.81	6.61	16.41	25.62	36.15
2.70	14.13	25.71	36.02	47.22	12.95	24.24	34.38	45.50	11.83	22.85	32.81	43.84	10.77	21.51	31.31	42.23	9.74	20.23	29.86	40.67	7.81	17.80	27.10	37.68	6.01	15.52	24.50	34.84
3.00	13.89	25.14	35.15	46.12	12.38	23.23	32.99	43.85	10.99	21.46	30.99	41.71	9.70	19.81	29.11	39.68	8.48	18.27	27.34	37.75	6.24	15.41	24.05	34.12	4.20	12.79	21.02	30.75
3.30	13.63	24.52	34.20	44.89	11.73	22.06	31.40	41.92	10.06	19.90	28.92	39.24	8.55	17.96	26.68	36.77	7.17	16.18	24.61	34.48	4.68	12.96	20.87	30.28	2.45	10.10	17.52	26.49
3.60	13.33	23.83	33.16	43.53	11.00	20.74	29.59	39.72	9.06	18.21	26.64	36.48	7.38	16.01	24.08	33.61	5.86	14.05	21.77	31.01	3.19	10.58	17.71	26.38	0.84	7.55	14.15	22.28
4.20	12.68	22.28	30.80	40.49	9.37	17.74	25.41	34.60	7.03	14.65	21.76	30.43	5.11	12.15	18.81	27.02	3.44	9.99	16.27	24.06	0.58	6.31	11.93	18.99		3.17	8.22	14.65
4.80	11.92	20.51	28.08	36.98	7.66	14.58	20.93	28.91	5.12	11.30	17.06	24.37	3.12	8.74	14.05	20.83	1.42	6.57	11.51	17.83		2.92	7.22	12.76			3.59	8.47
5.40	11.06	18.49	24.99	33.01	6.06	11.63	16.76	23.44	3.50	8.42	13.01	19.00	1.52	5.94	10.12	15.58		3.86	7.69	12.69			3.61	7.85				3.77
6.00	10.09	16.22	21.54	28.53	4.66	9.10	13.18	18.64	2.18	6.08	9.69	14.49	0.27	3.75	7.01	11.30		1.79	4.75	8.62				4.12				

PERFIL S	SELECCIONADO
Montante PB dirección y	Perfil PGC 140x2.00


Resistencia axial		¿Verifica?	Resistenc	¿Verifica?	
30,28	kN	VERIFICA	1,5	kN/m2	VERIFICA

14.4. Montantes planta baja piso dirección "x"

CARGAS	Bibliografía					
CARGAS PERMANEN						
Peso propio muro	Peso propio muro 0,7 kN/m2					
CARGAS VARIABLE						
Carga de viento Wx	0,66	kN/m2	Cirsoc 102-2005			

COMBINACIÓN DE ACCIONES PARA ELU									
Según principios del Método por Estados Límites (LRFD) CIRSOC 303-2013									
	AXIAL		HORIZONTAL						
1,4D	0,98	kN/m2	0,00	kN/m2					
1,2D+1,6L+0,5Lr	0,84	kN/m2	0,00	kN/m2					
1,2D+1,6L+0,5S	0,84	kN/m2	0,00	kN/m2					
1,2D+1,6Lr+0,5L	0,84	kN/m2	0,00	kN/m2					
1,2D+1,6S+0,5L	0,84	kN/m2	0,00	kN/m2					
1,2D+1,6Lr+0,8W	0,84	kN/m2	0,53	kN/m2					
1,2D+1,6S+0,8W	0,84	kN/m2	0,53	kN/m2					
1,2D+1,6W+0,5L+0,5Lr	0,84	kN/m2	1,05	kN/m2					
1,2D+1,6W+0,5L+0,5S	0,84	kN/m2	1,05	kN/m2					
1,2D+1E+0,5(L+Lr)+0,7S	0,84	kN/m2	0,00	kN/m2					
0,9D+1,6W	0,63	kN/m2	1,05	kN/m2					
0,9D+1E	0,63	kN/m2	0,00	kN/m2					
Carga última qu	0,98	kN/m2	1,05	kN/m2					

CÁLCULO MOMENTO MÁXIMO Y	/ REACCIONES	
Longitud máxima de montante entre apoyos	3,2	m
Ancho de influencia	0,4	m
Carga uniformemente lineal de viento	1,05	kN/m
Axial montante+ Reacción montante planta	2.51	LAI
alta	2,51	kN
Momento Máximo	1,35	kNm
Reacción/Corte máximo	1,68	kN

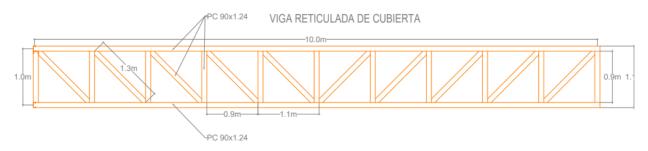
CARGA	DE VIENTO	$(l N l/m^2)$

				_						_		_				_		_			_				_					
l		0		l	0.25			0.50			0.75			1.00			1.50			2.00			2.50			3.00		l	3.50	
esp.																														
(mm)	0.89	1.24	1.60	0.89	1.24	1.60	0.89	1.24	1.60	0.89	1.24	1.60	0.89	1.24	1.6	0.89	1.24	1.60	0.89	1.24	1.60	0.89	1.24	1.60	0.89	1.24	1.60	0.89	1.24	1.60
long. (m)		SEPARACIÓN 400 mm																												
2.40	13.17	20.52	26.06	11.58	18.82	24.30	10.18	17.28	22.67	8.93	15.85	21.16	7.79	14.53	19.74	5.73	12.10	17.12	3.90	9.89	14.73	1.36	7.86	12.52		5.85	10.45		2.83	8.49
2.60	12.87	20.06	25.46	10.92	17.96	23.27	9.32	16.14	21.34	7.93	14.52	19.59	6.68	13.03	17.98	4.49	10.37	15.08	2.19	8.01	12.49		5.69	10.12		2.69	7.93			5.88
2.70	12.71	19.82	25.15	10.57	17.50	22.71	8.88	15.55	20.63	7.43	13.83	18.77	6.14	12.28	17.08	3.89	9.53	14.07	1.19	7.02	11.40		4.65	8.97		0.77	6.74			4.03
3.00	12.20	19.03	24.13	9.46	15.98	20.88	7.54	13.68	18.37	5.96	11.75	16.25	4.60	10.05	14.37	2.21	7.12	11.12		4.59	8.31			5.79			2.06			
3.30	11.62	19.60	22.99	8.29	14.33	18.84	6.24	11.78	16.03	4.61	9.60	13.75	3.23	7.76	11.79		4.65	8.44		0.88	5.59			1.77						
3.60	11.00	17.22	21.76	7.15	12.46	16.71	5.06	9.70	13.75	3.43	7.57	11.43	2.06	5.77	9.45		2.75	6.11			3.13									
4.20	9.58	14.88	19.78	5.12	8.85	12.62	3.11	6.32	9.65	1.57	4.38	7.37		2.75	5.45			2.23												
4.80	7.95	11.49	15.17	3.54	6.13	8.89	1.70	3.91	6.29		2.21	4.29			2.61															
5.40	6.30	9.08	11.99	2.36	4.32	6.41	0.73	2.34	4.09		0.77	2.32																		
6.00	5.10	7.36	9.71	1.56	3.07	4.69		1.29	2.60			1.01																		

PERFIL SELECCIONADO							
Montante PB dirección x	Perfil PGC 90x1.24						

Resiste	ncia axial	¿Verifica?	Resistenc	cia viento	¿Verifica?		
4,65	kN	VERIFICA	1,5	kN/m2	VERIFICA		

14.5. Viga reticulada cubierta


Al realizar el dimensionamiento de las vigas se opta por utilizar vigas reticuladas ya que los perfiles disponibles no poseen la suficiente resistencia como vigas principales de piso debido a las luces y cargas requeridas. Por lo tanto se dimensiona el cordón superior, cordón inferior, diagonales y montantes de dichas vigas.

CARGAS			Bibliografía				
CARGAS PERMANE							
Peso propio cubierta	Cirsoc 101-2005						
Peso propio paneles solares	0,11	kN/m2					
CARGAS VARIAE	CARGAS VARIABLES						
Sobrecarga de mantenimiento Lr	0,95	kN/m2	Cirsoc 101-2005				
Carga de nieve S	0,23	kN/m2	Cirsoc 104-2005				
CARGAS ACCIDEN							
Sismo E	0,45	kN/m2	Cirsoc 103-2005				

COMBINACIÓN DE ACCIOI	NES PARA ELU	
Según principios del Método por Estad	dos Límites (LI	RFD) CIRSOC
303-2013		
1,4D	0,77	kN/m2
1,2D+1,6L+0,5Lr	1,14	kN/m2
1,2D+1,6L+0,5S	0,78	kN/m2
1,2D+1,6Lr+0,5L	2,18	kN/m2
1,2D+1,6S+0,5L	1,03	kN/m2
1,2D+1,6Lr+0,8W	2,18	kN/m2
1,2D+1,6S+0,8W	1,03	kN/m2
1,2D+1,6W+0,5L+0,5Lr	1,14	kN/m2
1,2D+1,6W+0,5L+0,5S	0,78	kN/m2
1,2D+1E+0,5(L+Lr)+0,7S	1,75	kN/m2
0,9D+1,6W	0,50	kN/m2
0,9D+1E	0,94	kN/m2
Carga última qu	2,18	kN/m2

A partir de la carga última se hizo un dimensionamiento para los elementos sometidos a tracción y compresión respectivamente obteniendo la tracción y compresión requerida a través del modelo de viga realizado en el software SAP 2000.

Informe proyecto hospital 2020

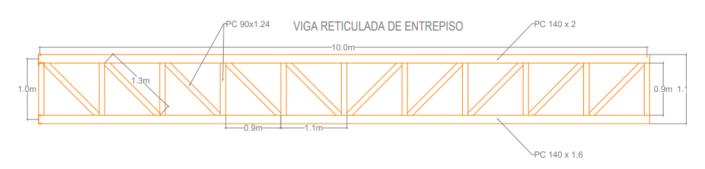
Viga cubierta									
Tracción requerida									
Diagonal	5,55	kN							
Cordón inferior	10,46	kN							
Com	Compresión requerida								
Montante	4,36	kN							
Cordón superior	10,46	kN							

Acero F24	Fy	235	Мра
	Fu	360	Мра
	φt1	0,9	
	φt2	0,75	
	E	200000	Мра
	фс	0,85	

	Elementos a traccion												
	Traccion requerida	Longitud	Fluencia en la seccion bruta	Fluencia en la seccion neta			Area del perfil	esbeltez		Radio de giro minimo			
	(Tu)		Ag	Ae	U	An	(Ag)	maxima elementos	K	(r min)			
	[kN]	[cm]	[cm2]	[cm2]		[cm2]	[cm2]	elementos		[kN]			
Cordon inferior	10,46	100	0,49	0,39	0,85	0,46	0,49	300	1	0,33			
Diagonal	5,55	141	0,26	0,21	0,85	0,24	0,26	300	1	0,47			

	Elementos a tracción										
Perfil propuesto											
Designacion	Ag	verificacion	iz	verificacion							
Designacion	[cm2]	verificación	[cm]	verificación							
PC 90 X 1.24	2,41	verifica	1,56	verifica							
PC 90 X 1.24	2,41	verifica	1,56	verifica							

	Elementos a compresión											
	Compresion requerida (Nu)	Longitud (L)	esbeltez maxima elementos	k	Radio de giro	esbeltez critica elementos	Tension critica (Fcr)	Area del perfil (Ag)				
	[kN]	[cm]	elementos		[kN]	cicilicitos	[Mpa]	[cm2]				
Montante	4,36	100	120	1	0,83	0,70	130,86	0,39				
Cordon superior	10,46	100	120	1	0,83	0,70	130,86	0,94				


Elementos a compresión										
	Perfil propuesto									
Designacion	Ag	verificacion	iz	verificacion						
Designation	[cm2]	verificacion	[cm]	verificación						
PC 90 X 1.24	2,41	verifica	1,56	verifica						
PC 90 X 1.24 2,41 verifica 1,56 ve										

14.6. Viga reticulada entrepiso

Se repite la misma situación que en el caso de la viga de cubierta variando la carga última.

CARGAS	CARGAS							
CARGAS PERMANE								
Peso propio entrepiso	Cirsoc 101-2005							
CARGAS VARIAB								
Sobrecarga L	5	kN/m2	Cirsoc 101-2005					
CARGAS ACCIDEN								
Sismo E	0,53	kN/m2	Cirsoc 103-2005					

COMBINACIÓN DE ACCIONES PARA ELU						
Según principios del Método por Estad	Según principios del Método por Estados Límites (LRFD) CIRSOC					
303-2013						
1,4D	0,71	kN/m2				
1,2D+1,6L+0,5Lr	8,61	kN/m2				
1,2D+1,6L+0,5S	8,61	kN/m2				
1,2D+1,6Lr+0,5L	3,11	kN/m2				
1,2D+1,6S+0,5L	3,11	kN/m2				
1,2D+1,6Lr+0,8W	0,61	kN/m2				
1,2D+1,6S+0,8W	0,61	kN/m2				
1,2D+1,6W+0,5L+0,5Lr	3,11	kN/m2				
1,2D+1,6W+0,5L+0,5S	3,11	kN/m2				
1,2D+1E+0,5(L+Lr)+0,7S	3,64	kN/m2				
0,9D+1,6W	0,46	kN/m2				
0,9D+1E	0,99	kN/m2				
Carga última qu	8,61	kN/m2				

١	/iga entrepiso					
Tracción requerida						
Diagonal 21,89 kN						
Cordón inferior	41,28	kN				
Compresión requerida						
Montante	17,2	kN				
Cordón superior	43	kN				

Acero F24	Fy	235	Мра
	Fu	360	Мра
	φt1	0,9	
	φt2	0,75	
	E	200000	Мра
	фс	0,85	

	Elementos a traccion									
	Traccion requerida	Longitud	Fluencia en la seccion bruta	Fluencia	en la s	seccion neta	Area del perfil	esbeltez	1.	Radio de giro minimo
	(Tu)	(L)	Ag	Ae	U	An	(Ag)	maxima	К	(r min)
	[kN]	[cm]	[cm2]	[cm2]		[cm2]	[cm2]	elementos		[kN]
Cordón inferior	41,28	100	1,95	1,53	0,85	1,80	1,95	300	1	0,33
Diagonal	21,89	141	1,04	0,81	0,85	0,95	1,04	300	1	0,47

Elementos a tracción							
Perfil propuesto							
Designacion	Ag	verificacion	iz	verificacion			
Designacion	[cm2]	verificación	[cm]	verificación			
PC 140 X 1.60	3,87	verifica	1,48	verifica			
PC 90 X 1.24	2,41	verifica	1,56	verifica			

	Elementos a compresión								
	Compresion requerida (Nu)	Longitud (L)	esbeltez maxima elementos	k	Radio de giro	esbeltez critica elementos	Tension critica (Fcr)	Area del perfil (Ag)	
Montante	[kN]	[cm]	elementos		[kN]	elementos	[Mpa]	[cm2]	
Montante	17,20	100	120	1	0,83	0,70	130,86	1,55	
Cordón superior	43,00	100	120	1	0,83	0,75	125,71	4,02	

Elementos a compresión							
Perfil propuesto							
Designacion Ag verificacion			iz	verificacion			
Designation	[cm2]	verificacion	[cm]	verificación			
PC 90 X 1.24	2,41	verifica	1,56	verifica			
PC 140 X 2.00	4,76	verifica	1,46	verifica			

14.7. Correas en cubierta

Para el dimensionamiento de las correas se tienen en cuenta las distintas cargas actuantes sobre la misma con sus distintas combinaciones:

CARGAS	Bibliografía		
CARGAS PERMANENTES D			
Peso propio cubierta	0,44	kN/m2	Cirsoc 101-2005
Peso propio paneles solares	0,11	kN/m2	
CARGAS VARIABLES			
Sobrecarga de mantenimiento Lr	0,95	kN/m2	Cirsoc 101-2005

Carga de nieve S	0.23	kN/m2	Cirsoc 104-2005
Carga de fileve 5	0,23	KIN/IIIZ	CII 30C 104-2003

COMBINACIÓN DE ACCIONES PARA ELU					
Según principios del Método por Estados Límites (LRFD) CIRSOC 303-2013					
1,4D	0,77	kN/m2			
1,2D+1,6L+0,5Lr	1,14	kN/m2			
1,2D+1,6L+0,5S	0,78	kN/m2			
1,2D+1,6Lr+0,5L	2,18	kN/m2			
1,2D+1,6S+0,5L	1,03	kN/m2			
1,2D+1,6Lr+0,8W	2,18	kN/m2			
1,2D+1,6S+0,8W	1,03	kN/m2			
1,2D+1,6W+0,5L+0,5Lr	1,14	kN/m2			
1,2D+1,6W+0,5L+0,5S	0,78	kN/m2			
1,2D+1E+0,5(L+Lr)+0,7S	1,30	kN/m2			
0,9D+1,6W	0,50	kN/m2			
0,9D+1E	0,50	kN/m2			
Carga última qu	2,18	kN/m2			

CÁLCULO MOMENTO MÁXIMO Y REACCIONES				
Longitud máxima de viga entre apoyos	0,8	m		
Ancho de influencia	0,61	m		
Carga uniformemente lineal	1,33	kN/m		
Momento Máximo	0,11	kNm		
Reacción/Corte máximo	0,53	kN		

Basandonos en los esfuerzos que soporta la correa se dimensiona la correa:

DATOS	Resis	¿Verifica?		
Correas de cubierta	PGC 90 X 0,89	1,06	kNm	verifica

14.8. Correas en planta baja

Al tener un entrepiso liviano se calcula una estructura de correas tambien para el, de este modo:

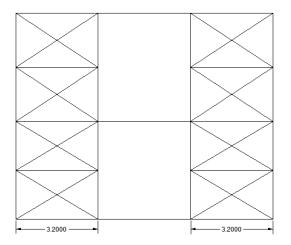
CARGAS			Bibliografía
CARGAS PERMANENTES D			
Peso propio entrepiso 0,51 kN/m2			Cirsoc 101-2005
CARGAS VARIABLES			

Cabuarana	_ ا	1.01 / 2	Circa - 101 2005
Sobrecarga L	5	kN/m2	Cirsoc 101-2005

COMBINACIÓN DE ACCIONES PARA ELU			
Según principios del Método por Estados Límites (LRFD) CIRSOC 303-2013			
1,4D	0,71	kN/m2	
1,2D+1,6L+0,5Lr	8,61	kN/m2	
1,2D+1,6L+0,5S	8,61	kN/m2	
1,2D+1,6Lr+0,5L	3,11	kN/m2	
1,2D+1,6S+0,5L	3,11	kN/m2	
1,2D+1,6Lr+0,8W	0,61	kN/m2	
1,2D+1,6S+0,8W	0,61	kN/m2	
1,2D+1,6W+0,5L+0,5Lr	3,11	kN/m2	
1,2D+1,6W+0,5L+0,5S	3,11	kN/m2	
1,2D+1E+0,5(L+Lr)+0,7S	3,11	kN/m2	
0,9D+1,6W	0,46	kN/m2	
0,9D+1E	0,46	kN/m2	
Carga última qu	8,61	kN/m2	

CÁLCULO MOMENTO MÁXIMO Y REACCIONES			
Longitud máxima de viga entre apoyos	0,8	m	
Ancho de influencia	0,61	m	
Carga uniformemente lineal		kN/m	
Momento Máximo		kNm	
Reacción/Corte máximo		kN	


Igual que en el caso anterior, considerando los esfuerzos soportados por las correas se elige la siguiente:


DATOS		Resis	tencia	¿Verifica?
Correas de entrepiso	PGC 90 X 1.24	1,06	kNm	verifica

14.9. Flejes de acero

Comparamos ambas propuestas de configuraciones que se muestran en las figuras, las dos tienen flejes de ambos lados del muro.

Si bien es menor el ángulo de los flejes en la figura 2, al haber menos flejes cada anclaje (va en cada encuentro de fleje) toma más esfuerzos y no es conveniente. Por lo tanto se eligió la configuración de la figura 1.

14.9.1. Flejes primer piso

COMBINACIÓN DE ACCIONES PARA ELU		
(LRFD) CIRSOC 303-2013		
1,2D+1,6W+0,5L+0,5Lr	1,05	
1,2D+1,6Lr+0,8W	0,53	
1,2D+1,6S+0,8W	0,53	
1,2D+1,6W+0,5L+0,5Lr	1,05	
0,9D+1E	2,00	

Geometría fleje superior			
Carga puntual	84,00	kN	
Area tributaria sup	42,00	m ²	
Largo	1,60	m	
Alto	2,10	m	
Angulo α	52,70	0	

Cálculo de esfuerzos			
Paño Rigidizado superior			
Compresión solera (-) 84,00 kN			
Tracción Tensor diagonal (+)	138,60	kN	
Compresión montante (-)	110,25	kN	

Dimensionamiento fleje

Materiales			
Fy	250	MPa	
Fu	330	MPa	
Geometria seccion			
espesor "e"	1,5	mm	
ancho "a"	100	mm	

Cantidad de flejes	16,00	u
Tu= Traccion/cant flejes	8,66	kN

Fluencia del área bruta				
(Ec. C.2-1) $T_d = \phi A_g.F_y$ 27,00 kN				
ф 0,9				
Área bruta Ag 120,00 mm²				

Rotura en el área efectiva			
(Ec. C.2-2) $T_d = \phi A_n.F_u$ 24,42 kN			
ф 0,75			
(Ec. E.2-7) Área efect.		98,65	mm^2

Verificaciones			
Tu< Td1= f Ag.Fy? Verifica			
Tu <td2= an.fu?<="" f="" td=""><td>Verifica</td></td2=>	Verifica		

14.9.2. Fleje planta baja

COMBINACIÓN DE ACCIONES PARA ELU		
(LRFD) CIRSOC 303-2013		
1,2D+1,6W+0,5L+0,5Lr	1,05	
1,2D+1,6Lr+0,8W	0,53	
1,2D+1,6S+0,8W	0,53	
1,2D+1,6W+0,5L+0,5Lr	1,05	
0,9D+1E	2,70	

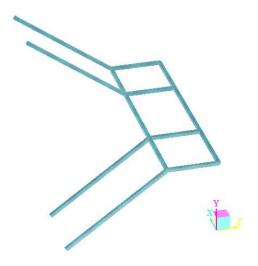
Geometría fjeje Inferior			
Carga puntual	102,60	kN	
Area tributaria sup	38,00	m^2	
Largo	1,60	m	
Alto	1,90	m	
Angulo α	49,90	0	

Cálculo de esfuerzos			
Paño Rigidizado inferior			
Compresión solera (-)	186,60	kN	
Tracción Tensor diagonal (+)	289,69	kN	
Compresión montante (-)	331,84	kN	

Dimensionamiento

Materiales			
Fy 250 MPa			
Fu	330	MPa	
Geometría de la sección			
espesor "e"	1,50	mm	
ancho "a"	100,0	mm	

Cantidad de flejes	16,00	u
Tu= Traccion/cant.flejes	18,11	kN


Fluencia del área bruta			
(Ec. C.2-1) $T_d = \phi A_g.F_y$ 33,75 kN			
ф 0,9			
Área b	ruta Ag	150,00	mm^2

Rotura en el área efectiva				
(Ec. C.2-2) $T_d = \phi A_n . F_u$ 30,54 kN				
ф		0,75		
(Ec. E.2-7)	Área efect.	123,39	mm ²	

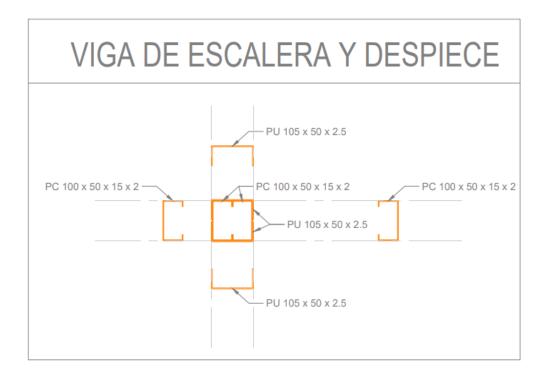
Verificaciones			
Tu< Td1= f Ag.Fy? Verifica			
Tu <td2= an.fu?="" f="" td="" verifica<=""></td2=>			

14.10. Escalera

La misma fue modelada en el software Ram Advance V9.

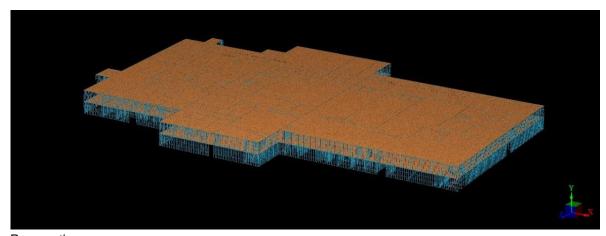
Elemento: Escalera metalica				
Vigas metalicas		0,20	kN/m2	
Escalones de metal desplegad	do	0,15	kN/m2	
Baranda metalica		0,10	kN/m2	
	D=	0,45	kN/m2	
Sobrecarga	L=	5,00	kN/m2	

COMBINACIÓN DE ACCIONES PARA ELU			
Según principios del Método por Estados Límites (LRFD) CIRSOC 303-			
2013			
1,4D	0,63	kN/m2	
1,2D+1,6L+0,5Lr	8,54	kN/m2	
1,2D+1,6L+0,5S	8,54	kN/m2	
1,2D+1,6Lr+0,5L	3,04	kN/m2	
1,2D+1,6S+0,5L	3,04	kN/m2	
1,2D+1,6Lr+0,8W	0,54	kN/m2	
1,2D+1,6S+0,8W	0,54	kN/m2	
1,2D+1,6W+0,5L+0,5Lr	3,04	kN/m2	
1,2D+1,6W+0,5L+0,5S	3,04	kN/m2	
1,2D+1E+0,5(L+Lr)+0,7S	3,04	kN/m2	
0,9D+1,6W	0,41	kN/m2	
0,9D+1E	0,41	kN/m2	
Carga última qu	8,54	kN/m2	

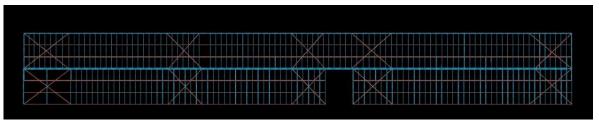

CÁLCULO MOMENTO MÁXIMO Y REACCIONES			
Luz libre entre vigas	3,6	m	
Ancho de influencia	0,9	m	
Carga ultima por cada viga	7,69	kN/m	

				licitaciones últi	mas
Desig.	Lx (m) Ly (m)		Mx	Му	N
, o	m	m	kNm	kNm	kN
VME	3,60	3,60	7,21	0,28	-69,04

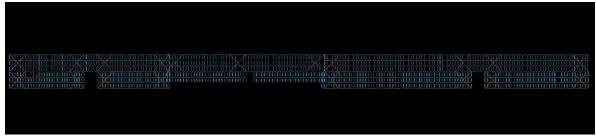
Se adopta una sección tipo cajón mediante perfiles doble C y doble U para evitar las posibilidades de pandeo torsional y local mediante una sección doblemente simétrica brindándole mayor rigidez.

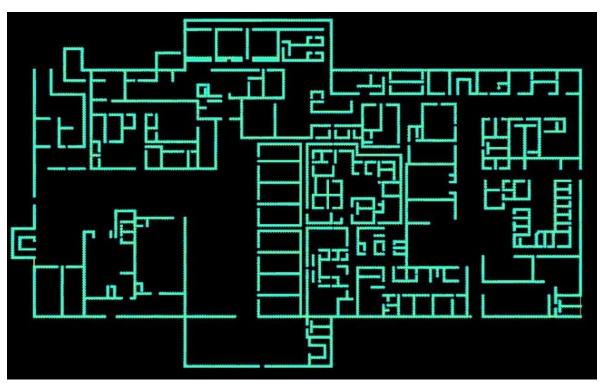

Caracteristicas geometricas						
Ag	Ag lxx Sxx rxx lyy Syy ryy					
cm ²	cm ⁴	cm ³	cm	cm ⁴	cm ³	cm
18,51	202,06	50,51	3,30	233,25	58,31	3,55

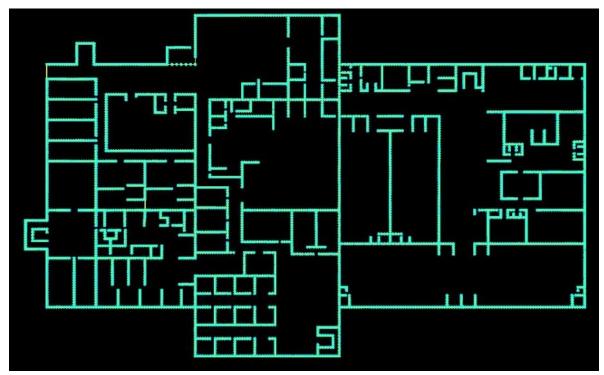
PERFIL SELECCIONADO					
Vigas oscalora motalica	Doble perfil PGC 100x50x15x2 + doble perfil PGU				
Vigas escalera metalica	105x50x2,5				



15. MODELADO ESTRUCTURAL


Se utilizo para la modelación estructural el Software Ram Advance V9. En el mismo se cargaron todos los estados, combinaciones de carga y los elementos estructurales previamente dimensionados. A continuación, se muestran algunas imágenes del modelo estructural.


Perspectiva


Vista lateral

Vista frontal

Planta baja

Primer piso

VERIFICACIÓN 16.

16.1. Verificación montantes a compresión

16.1.1. Montante 1° piso "dirección y"

RESISTENCIA A COMPRESIÓN-DATOS Montante 1° piso dirección "y" Perfil PGC 90 X 1.60

considerand	ia nominal a o o el efecto de flexotorsión o	pandeo por	Observaciones
Ae	2,46	cm2	
Fy	235	MPa	
Fe	197,64	MPa	Se obtiene según los ítems 1-1 a 1-2
λc	1,09	ad	
Fn	94,33	MPa	
Rn	23,20	kN	
1-1 Secciones no sometidas a pandeo por torsión o flexotorsión			Observaciones
Fex	240,49	Мра	
rx	35,32	mm	
lx	38,3	cm4	
Α	3,07	cm2	
E	200000	MPa	
Kx	1	ad	
L	3200	mm	
Fey	375,72	MPa	
ry	15,45	mm	
ly	7,33	cm4	
Α	3,07	cm2	
E	200000	MPa	
Ку	0,35	ad	
L	3200	mm	
Fcr	240,49	MPa	

	es con uno o ometidas a pa		Observaciones
	n o por flexot		
х0	38,22	mm	
r0	5,43	cm	
rx	35,32	mm	
lx	38,3	cm4	
Α	3,07	cm2	
ry	15,45	mm	
ly	7,33	cm4	
Α	3,07	cm2	
в	0,50	ad	
Е	200000	MPa	
Kx	1	ad	
L	3200	mm	
σex	240,49	MPa	
G	77200	MPa	
J	0	cm4	
Cw	373,46	cm6	
Kt	0,35	ad	
σt	649,54	MPa	
Fe	197,64	MPa	

Resistencia a compresión requerida (extraída del modelo)					
Rr	5,8	kN			
Resistencia de diseño a compresión					
Ф	0,85				
Rn 23,20 kN					
Rd 19,72 kN					

	¿VERIFICA?	•
Rr ≤ Rd	=Φ*Rn	VERIFICA

16.1.2. Montante 1° piso "dirección x"

RESISTENCIA A COMPRESIÓN-DATOS	
Montante 1° piso dirección "x" Perfil PGC 90 X 1.24	

1-Resistenc	ia nominal a d	compresión	·
	o el efecto de		Observaciones
flexión, flexotorsión o torsión			Case vaciones
Ae	1,94	cm2	
Fy	235	MPa	
Fe	202,38	MPa	Se obtiene según los ítems 1-1 a 1-2
			Se obtieffe seguil fos items 1-1 a 1-2
λς	1,08	ad MPa	
Fn	95,35		
Rn	18,50	kN	
	es no sometid	•	Observaciones
	rsión o flexot		
Fex	243,80	Мра	
rx	35,56	mm	
lx	30,48	cm4	
Α	2,41	cm2	
E	200000	MPa	
Kx	1	ad	
L	3200	mm	
Fey	385,24	MPa	
ry	15,65	mm	
ly	5,9	cm4	
Α	2,41	cm2	
E	200000	MPa	
Ку	0,35	ad	
L	3200	mm	
Fcr	243,80	MPa	
-2- Seccior	nes con uno o	dos ejes de	
simetría s	ometidas a pa	andeo por	Observaciones
torsió	n o por flexot	orsión	
x0	37,74	mm	
r0	5,42	cm	
rx	35,56	mm	
lx	30,48	cm4	
Α	2,41	cm2	
ry	15,65	mm	
ly	5,9	cm4	
A	2,41	cm2	
в	0,51	ad	
E	200000	MPa	
Kx	1	ad	
L	3200	mm	
σех	243,80	MPa	
G	77200	MPa	
J	0	cm4	
Cw	306,63	cm6	
Kt	0,35	ad	
σt	682,42	MPa	
υι		MPa	
Fe	202,38	/ レコ	Pá _t

Resistencia a compresión requerida (extraída del modelo)					
Rr	Rr 8,75 kN				
Resistencia de diseño a compresión					
Ф	0,85				
Rn 18,50 kN					
Rd 15,72 kN					

¿VERIFICA?	
Rr≤Rd=Φ*Rn	VERIFICA

16.1.3. Montante planta baja piso "dirección y"

RESISTENCIA A COMPRESIÓN-DATOS Montante planta baja dirección "y" Perfil PGC 140 X 2.00

considerand	ia nominal a d o el efecto de flexotorsión d	pandeo por	Observaciones
Ae	4,02	cm2	
Fy	235	MPa	
Fe	336,54	MPa	Se obtiene según los ítems 1-1 a 1-2
λc	0,84	ad	
Fn	116,75	MPa	
Rn	46,94	kN	
	es no sometid rsión o flexot	•	Observaciones
Fex	540,07	Мра	
rx	52,93	mm	
lx	133,36	cm4	
А	4,76	cm2	
Е	200000	MPa	
Kx	1	ad	
L	3200	mm	
Fey	336,54	MPa	
ry	14,62	mm	
ly	10,18	cm4	
Α	4,76	cm2	
Е	200000	MPa	
Ку	0,35	ad	
L	3200	mm	
Fcr	336,54	MPa	

1-2- Secciones con uno o dos ejes de simetría sometidas a pandeo por torsión o por flexotorsión			Observaciones
x0	32,52	mm	
r0	6,38	cm	
rx	52,93	mm	
lx	133,36	cm4	
Α	4,76	cm2	
ry	14,62	mm	
ly	10,18	cm4	
Α	4,76	cm2	
в	0,74	ad	
Е	200000	MPa	
Kx	1	ad	
L	3200	mm	
σex	540,07	MPa	
G	77200	MPa	
J	0	cm4	
Cw	898,10	cm6	
Kt	0,35	ad	
σt	728,93	MPa	
Fe	406,74	MPa	

Resistencia a compresión requerida (extraída del modelo)				
Rr 24,18 kN				
Resistencia de diseño a compresión				
Ф	0,85			
Rn	46,94	kN		
Rd	39,90	kN		

¿VERIFICA	?
Rr≤Rd=Φ*Rn	VERIFICA

16.1.4. Montante planta baja "dirección x"

RESISTENCIA A COMPRESIÓN-DATOS	
Montante planta baja dirección "x" Perfil PGC 90 X 1.24	

1-Resistenc	ia nominal a d	compresión.	·
			Observaciones
considerando el efecto de pandeo por flexión, flexotorsión o torsión			Observaciones
Ae	1,94	cm2	
Fy	235	MPa	
Fe	202,38	MPa	Se obtiene según los ítems 1-1 a 1-2
λς	1,08	ad	Se obtiene seguirios items 1-1 a 1-2
Fn	95,35	MPa	
Rn	18,50	kN	
	es no sometid		
	rsión o flexot	-	Observaciones
Fex	243,80	Mpa	
rx	35,56	mm	
lx	30,48	cm4	
A	2,41	cm2	
E	200000	MPa	
Kx	1	ad	
L	3200	mm	
Fey	385,24	MPa	
ry	15,65	mm	
ly	5,9	cm4	
A	2,41	cm2	
Е	200000	MPa	
Ку	0,35	ad	
L	3200	mm	
Fcr	243,80	MPa	
1-2- Seccion	es con uno o	dos ejes de	
simetría s	ometidas a pa	andeo por	Observaciones
torsió	n o por flexot	orsión	
х0	37,74	mm	
r0	5,42	cm	
rx	35,56	mm	
lx	30,48	cm4	
Α	2,41	cm2	
ry	15,65	mm	
ly	5,9	cm4	
Α	2,41	cm2	
в	0,51	ad	
E	200000	MPa	
Kx	1	ad	
L	3200	mm	
σex	243,80	MPa	
G	77200	MPa	
J	0	cm4	
Cw	306,63	cm6	
Kt	0,35	ad	
σt	682,42	MPa	
Fe	202,38	MPa	

Resistencia a compresión requerida (extraída del modelo)				
Rr 1,04 kN				
Resistencia de diseño a compresión				
Ф	0,85			
Rn	18,50	kN		
Rd 15,72 kN				

¿VERIFICA?	
Rr≤Rd=Φ*Rn	VERIFICA

16.2. Verificación montantes a flexión

16.2.1. Montante 1° piso "dirección y"

RESISTENCIA A FLEXIÓN-DATOS	
Montante 1° piso dirección "y" Perfil PGC 90 X 1.60	

1-Resisten	cia nominal a	la sección	Observaciones
lex	34,47	cm4	
ley	6,60	cm4	
lexy	2	cm4	
х	19,025	mm	
У	44,025	mm	
Sex	8,85	cm3	
Fy	235	MPa	
Mn	2,08	kNm	

2-Resist	encia a pande	o lateral-	
torsional			Observaciones
f=Fy	235	MPa	
k	4		
μ	0,3		
t	0,164	cm	
h	8,9344	cm	
Fcr	243,63	MPa	
λ	0,98		
ρ	0,79		
be	26,42	mm	Ancho efectivo
b	33,44	mm	
lex	34,47	cm4	
ley	6,60	cm4	
lexy	2	cm4	
хс	19,025	mm	
ус	44,025	mm	
Fy	235	MPa	
Scx	8,85	cm3	
Cb	1	ad	
х0	38,22	mm	
r0	5,43	cm	
rx	35,32	mm	
lx	38,3	cm4	
Α	3,07	cm2	
ry	15,45	mm	
ly	7,33	cm4	
Α	3,07	cm2	
хс	20	mm	
ус	45	mm	
Sfx	8,51	cm3	
lxy	0	cm4	
σеу	375,72	MPa	
E	200000	Мра	
Ку	0,35	ad	
Ly	3200	mm	
σt	649,54	MPa	
G	77200	MPa	
J	0	cm4	
Cw	373,46	cm6	
Kt	0,35	ad	
Lt	3200	mm	
Fe	967,34	MPa	
Fc	235	MPa	
Mn	2,08	kNm	

Resistencia a flexión requerida				
Mr 0,12 kNm				
Resistencia de diseño a flexión				
Ф	0,9			
Mn	2,08	kNm		
Md	1,87	kNm		

¿VERIFICA?		
Mr≤Md=Φ*Mn	VERIFICA	

16.2.2. Montante 1° piso "dirección x"

RESISTENCIA A FLEXIÓN-DATOS	
Montante 1° piso dirección "x" Perfil PGC 90 X 1.24	

1-Resistencia nominal a la sección		la sección	Observaciones
lex	27,432	cm4	
ley	5,31	cm4	
lexy	2	cm4	
х	20,55	mm	
У	45,55	mm	
Sex	6,83	cm3	
Fy	235	MPa	
Mn	1,61	kNm	

2-Resiste	encia a pande torsional	o lateral-	Observaciones
f=Fy	235	MPa	
k	4	IVII U	
μ	0,3		
t	0,128	cm	
h	8,9488	cm	
Fcr	147,93	MPa	
λ	1,26	IVIFA	
	0,65		
ρ be	22,84	mm	Ancho efectivo
b	34,88	mm	Ancho erectivo
lex	27,432	cm4	
	5,31	cm4	
ley	2		
lexy		cm4	
XC	20,55	mm	
yc	45,55	mm	
Fy	235	MPa	
Scx	6,83	cm3	
Cb	1	ad	
х0	37,74	mm	
r0	5,42	cm	
rx	35,56	mm	
lx	30,48	cm4	
Α	2,41	cm2	
ry	15,65	mm	
ly	5,9	cm4	
Α	2,41	cm2	
хс	20	mm	
ус	45	mm	
Sfx	6,77	cm3	
lxy	0	cm4	
σеу	385,24	MPa	
Е	200000	Мра	
Ку	0,35	ad	
Ly	3200	mm	
σt	682,42	MPa	
G	77200	MPa	
J	0	cm4	
Cw	306,63	cm6	
Kt	0,35	ad	
Lt	3200	mm	
Fe	988,15	MPa	
Fc	235	MPa	
Mn	1,61	kNm	

Resistencia a flexión requerida					
Mr	Mr 0,51 kNm				
Resistencia de diseño a flexión					
Ф	0,9				
Mn	1,61	kNm			
Md	1,45	kNm			

¿VERIFICA?	
Mr≤Md=Φ*Mn	VERIFICA

16.2.3. Montante planta baja "dirección y"

RESISTENCIA A FLEXIÓN-DATOS	
Montante planta baja dirección "y" Perfil PGC 140 X 2.00	

1-Resister	cia nominal a	la sección	Observaciones
lex	120,024	cm4	
ley	9,16	cm4	
lexy	3	cm4	
х	19,62	mm	
У	69,62	mm	
Sex	18,89	cm3	
Fy	235	MPa	
Mn	4,44	kNm	

2-Resiste	encia a pande	o lateral-	
torsional			Observaciones
f=Fy	235	MPa	
k	4		
μ	0,3		
t	0,204	cm	
h	13,9184	cm	
Fcr	155,33	MPa	
λ	1,23		
ρ	0,67		
be	21,26	mm	Ancho efectivo
b	31,84	mm	
lex	120,024	cm4	
ley	9,16	cm4	
lexy	3	cm4	
хс	19,62	mm	
ус	69,62	mm	
Fy	235	MPa	
Scx	18,89	cm3	
Cb	1	ad	
х0	32,52	mm	
r0	6,38	cm	
rx	52,93	mm	
lx	133,36	cm4	
Α	4,76	cm2	
ry	14,62	mm	
ly	10,18	cm4	
Α	4,76	cm2	
ХC	20	mm	
ус	70	mm	
Sfx	19,05	cm3	
lxy	0	cm4	
σеу	336,54	MPa	
Е	200000	Мра	
Ку	0,35	ad	
Ly	3200	mm	
σt	728,93	MPa	
G	77200	MPa	
J	0	cm4	
Cw	898,10	cm6	
Kt	0,35	ad	
Lt	3200	mm	
Fe	789,77	MPa	
Fc	235	MPa	
Mn	4,44	kNm	

Resisten	Resistencia a flexión requerida					
Mr						
	Resistencia de diseño a flexión					
Ф	0,9					
Mn	4,44	kNm				
Md	4,00	kNm				

¿VERIFICA?		
Mr≤Md=Φ*Mn	VERIFICA	

16.2.4. Montante planta baja "dirección x"

RESISTENCIA A FLEXIÓN-DATOS Montante planta baja dirección "x" Perfil PGC 90 X 1.24

1-Resister	ncia nominal a	la sección	Observaciones
lex	27,432	cm4	
ley	5,31	cm4	
lexy	2	cm4	
Х	20,55	mm	
у	45,55	mm	
Sex	6,83	cm3	
Fy	235	MPa	
Mn	1,61	kNm	

2 Posiste	ncia a nanda		
2-Resistencia a pandeo lateral- torsional		o iaterai-	Observaciones
f=Fy	235	MPa	
k	4	IVII a	
	0,3		
μ t	0,128	cm	
h	8,9488	cm	
Fcr	147,93	MPa	
λ	1,26	IVIFA	
	0,65		
ρ be	22,84	mm	Ancho efectivo
b	34,88	mm	Ancho erectivo
lex	27,432	cm4	
ley	5,31	cm4	
lexy	2	cm4	
хс	20,55	mm	
ус	45,55	mm	
Fy	235	MPa	
Scx	6,83	cm3	
Cb	1	ad	
x0	37,74	mm	
r0	5,42	cm	
rx	35,56	mm	
lx	30,48	cm4	
A	2,41	cm2	
	15,65	mm	
ry	5,9	cm4	
ly A	2,41	cm2	
хс	20		
	45	mm	
yc Sfx	6,77	mm cm3	
lxy	0,77	cm4	
	385,24	MPa	
σey E	200000	Mpa	
Ку	0,35	ad	
	3200		
Ly	682,42	mm MPa	
σt G	77200	MPa	
J	0		
Cw		cm4	
Kt	306,63 0,35	cm6 ad	
	· · · · · · · · · · · · · · · · · · ·		
Lt	3200	MM	
Fe	988,15	MPa	
Fc	235	MPa	
Mn	1,61	kNm	

Resistencia a flexión requerida					
Mr	Mr 0,12 kNm				
Resistencia de diseño a flexión					
Ф	0,9				
Mn	1,61	kNm			
Md	Md 1,45 kNm				

¿VERIFICA?	
Mr≤Md=Φ*Mn	VERIFICA

16.3. Verificación montantes a corte

16.3.1. Montante 1° piso "dirección y"

RESISTENCIA A CORTE-DATOS Montante 1° piso dirección "y" Perfil PGC 90 X 1.60

Resistencia a corte			Observaciones
а	106,67	cm	Distancia libre entre rigidizadores tranversales
h	9	cm	Altura de alma
a/h	11,85	ad	
kv	4	ad	Coeficiente de abolladura por corte
Е	200000	MPa	
Fy	235	MPa	
t	0,16	cm	
h/t	56,25	ad	
√((E*kv)/Fy)	58,62	ad	
1,51*V((E*kv)/Fy)	88,52	ad	
Fv	141	MPa	
Aw	1,44	cm2	Área del alma de la barra
Vn	20,304	kN	

Resistencia a corte requerida			
Vr	3,72	kN	
Resistencia de diseño a corte			
Ф	0,95		
Vn	20,30	kN	
Vd	19,29	kN	

¿VERIFICA?		
Vr≤Vd=Φ*Vn	VERIFICA	

16.3.2. Montante 1° piso "dirección x"

RESISTENCIA A CORTE-DATOS Montante 1° piso dirección "x" Perfil PGC 90 X 1.24

Resistencia a corte			Observaciones
a	106,67	cm	Distancia libre entre rigidizadores tranversales
h	9	cm	Altura de alma
a/h	11,85	ad	
kv	4	ad	Coeficiente de abolladura por corte
Е	200000	MPa	
Fy	235	MPa	
t	0,13	cm	
h/t	70,3125	ad	
√((E*kv)/Fy)	58,62	ad	
1,51*V((E*kv)/Fy)	88,52	ad	
Fv	118	MPa	
Aw	1,152	cm2	Área del alma de la barra
Vn	13,54	kN	

Resistencia a corte requerida			
Vr	5,23	kN	
Resistencia de diseño a corte			
Ф	0,95		
Vn	13,54	kN	
Vd	12,87	kN	

¿VERIFICA?		
Vr≤Vd=Φ*Vn	VERIFICA	

16.3.3. Montante planta baja "dirección y"

RESISTENCIA A CORTE-DATOS	
Montante planta baja dirección "y" Perfil PGC 140x2.00	

Resistencia a corte			Observaciones
а	106,67	cm	Distancia libre entre rigidizadores tranversales
h	14	cm	Altura de alma
a/h	7,62	ad	
kv	4	ad	Coeficiente de abolladura por corte
Е	200000	MPa	
Fy	235	MPa	
t	0,204	cm	
h/t	68,63	ad	
√((E*kv)/Fy)	59,01	ad	
1,51*V((E*kv)/Fy)	89,11	ad	
Fv	121	MPa	
Aw	2,86	cm2	Área del alma de la barra
Vn	34,63	kN	

Resistencia a corte requerida				
Vr	6,45	kN		
Resistencia de diseño a corte				
Ф	0,95			
Vn	34,63	kN		
Vd	32,90	kN		

¿VERIFICA?		
Vr≤Vd=Φ*Vn	VERIFICA	

16.3.4. Montante planta baja "dirección x"

RESISTENCIA A CORTE-DATOS	
Montante planta baja dirección "x" Perfil PGC 90 X 1.24	

Resistencia a corte			Observaciones
а	106,67	cm	Distancia libre entre rigidizadores tranversales
h	9	cm	Altura de alma
a/h	11,85	ad	
kv	4	ad	Coeficiente de abolladura por corte
Е	200000	MPa	
Fy	235	MPa	
t	0,13	cm	
h/t	70,3125	ad	
√((E*kv)/Fy)	58,62	ad	
1,51*V((E*kv)/Fy)	88,52	ad	
Fv	118	MPa	
Aw	1,152	cm2	Área del alma de la barra
Vn	13,54	kN	

Resistencia a corte requerida		
Vr	2,08	kN
Resistencia de diseño a corte		
Ф	0,95	
Vn	13,54	kN
Vd	12,87	kN

¿VERIFICA?	
Vr≤Vd=Φ*Vn VERI	

16.4. Verificación montantes a flexo-compresión Se debe cumplir que:

$$\frac{P_u}{\emptyset_c*P_n} + \frac{M_u}{\emptyset_b*M_n} \leq 1$$

16.4.1. Montante 1° piso "dirección y"

RESISTENCIA A FLEXO-COMPRESIÓN DATOS		
Montante 1° piso dirección "y" Perfil		
PGC 90 X 1.60		
Pu	5,8	kN
Фс	0,85	ad
Pn	23,2	kN
Mu	0,12	kNm
ФЬ	0,9	ad
Mn	2,08	kNm
Resultado	0,36	ad
¿Verifica? VERIFICA		

16.4.2. Montante 1° piso "dirección x"

RESISTENCIA A FLEXO-COMPRESIÓN DATOS			
Montante 1° piso dirección "x" Perfil			
	PGC 90 X 1.24		
Pu	8,75	kN	
Фс	0,85	ad	
Pn	18,5	kN	
Mu	0,51	kNm	
Фb	0,9	ad	
Mn	1,61	kNm	
Resultado	0,91	ad	
¿Verifica? VERIFICA			

16.4.3. Montante planta baja "dirección y"

RESISTENCIA A FLEXO-COMPRESIÓN DATOS		
Montante planta baja dirección "y" Perfil PGC 140 X 2.00		
Pu	24,18	kN
Фс	0,85	ad
Pn	46,94	kN
Mu	1,31	kNm
Фb	0,9	ad
Mn	4,44	kNm
Resultado	0,93	ad
¿Verifica?	VERIFICA	

16.4.4. Montante planta baja "dirección x"

RESISTENCIA A FLEXO-COMPRESIÓN DATOS		
Montante planta baja dirección "x" Perfil PGC 90 X 1.24		
Pu	1,04	kN
Фс	0,85	ad
Pn	18,5	kN
Mu	0,12	kNm
Фb	0,9	ad
Mn	1,61	kNm
Resultado	0,15	ad
¿Verifica?	VERIFICA	

16.5. Verificación montantes a flexión y corte Se debe cumplir que:

$$0.6*\left(\frac{M_u}{\emptyset_b*M_n}\right)+(\frac{V_u}{\emptyset_v*V_n})\leq 1.3$$

16.5.1. Montante 1°piso "dirección y"

RESISTENCIA A FLEXIÓN Y CORTE DATOS			
Montante planta baja dirección "x" Perfil PGC 90 X 1.60			
Mu 0,12 kN			
ФЬ	0,9	ad	
Mn	2,08	kN	
Vu	3,72	kNm	
Фи	0,95	ad	
Vn	20,3	kNm	
Resultado	0,23	ad	
¿Verifica?	VERIFICA		

16.5.2. Montante 1° piso "dirección x"

RESISTENCIA A FLEXIÓN Y CORTE DATOS		
Montante planta baja dirección "x"		
Per	fil PGC 90 X 1	24
Mu	0,51	kN
Фb	0,9	ad
Mn	1,61	kN
Vu	5,23	kNm
Ф٧	0,95	ad
Vn	13,54	kNm
Resultado	0,62	ad
¿Verifica?	VERIFICA	

16.5.3. Montante planta baja "dirección y"

RESISTENCIA A FLEXIÓN Y CORTE DATOS		
Montante planta baja dirección "x" Perfil PGC 140 X 2.00		
Per	III PGC 140 X	2.00
Mu	1,31	kN
Фb	0,9	ad
Mn	4,44	kN
Vu	6,45	kNm
Фи	0,95	ad
Vn	34,63	kNm
Resultado	0,39	ad
¿Verifica?	VERIFICA	

16.5.4. Montante planta baja "dirección x"

RESISTENCIA A FLEXIÓN Y CORTE DATOS			
Montante planta baja dirección "x"			
Pei	Perfil PGC 90 X 1.24		
Mu	0,12	kN	
Фb	0,9	ad	
Mn	1,61	kN	
Vu	2,08	kNm	
Ф٧	0,95	ad	
Vn	13,54	kNm	
Resultado	0,21	ad	
¿Verifica?	VERIFICA		

16.6. Verificación viga reticulada cubierta componentes a tracción

16.6.1. Cordón inferior

RESISTENCIA A TRACCIÓN-DATOS	
Viga reticulada de cubierta - Cordón inferior - Perfil PGC 90 x 1.24	

1- Fluencia en la sección bruta		
Ag	2,41	cm2
Fy	235	Мра
Rn	56,635	kN
2- Rotura en la sección neta fuera de		
las uniones		
An	1,94	cm2
Fu	360	MPa
Rn	69,84	kN

Resistencia a tracción requerida			
Rr	10,46 kN		
Resistencia de diseño a tracción			
Ф	0,9		
Rn	56,64	kN	
Rd	50,97	kN	

¿VERIFICA?	
Rr≤Rd=Φ*Rn	VERIFICA

16.6.2. Diagonal

RESISTENCIA A TRACCIÓN-DATOS	
'iga reticulada de cubierta - Diagonal - Perfil PGC 90 x 1.24	

1- Fluencia en la sección bruta			
Ag	2,41	cm2	
Fy	235	Mpa	
Rn	56,635	kN	
2- Rotura en la sección neta fuera de			
las uniones			
An	1,94	cm2	
Fu	360	MPa	

Resistencia a tracción requerida			
Rr	5,55 kN		
Resistencia de diseño a tracción			
Ф	0,9		
Rn	56,64	kN	
Rd	50,97	kN	

¿VERIFICA?		
Rr≤Rd=Φ*Rn	VERIFICA	

16.7. Verificación viga reticulada cubierta componentes a compresión

16.7.1. Cordón superior

·	RESIS	TENCIA A CO	MPRESIÓN-D	ATOS	
Viga re	ticulada de cı	ıbierta - Cord	lón superior -	Perfil PGC 90	x 1.24

1-Resistencia nominal a compresión, considerando el efecto de pandeo por			
flexión,	flexotorsión	o torsión	
Ae	1,94	cm2	
Fy	235	MPa	
Fe	2072,34	MPa	
λc	0,34	ad	
Fn	177,27	MPa	
Rn	34,39	kN	
1-1 Seccione	s no sometid	as a pandeo	
por to	rsión o flexot	orsión	
Fex	2496,48	Мра	
rx	35,56	mm	
lx	30,48	cm4	
Α	2,41	cm2	
Е	200000	MPa	
Kx	1	ad	
L	1000	mm	
Fey	3944,83	MPa	
ry	15,65	mm	
ly	5,9	cm4	
Α	2,41	cm2	
Е	200000	MPa	
Ку	0,35	ad	
L	1000	mm	
Fcr	2496,48	MPa	

1-2- Secciones con uno o dos ejes de simetría sometidas a pandeo por torsión o por flexotorsión			
x0	37,74	mm	
r0	5,42	cm	
rx	35,56	mm	
lx	30,48	cm4	
Α	2,41	cm2	
ry	15,65	mm	
ly	5,9	cm4	
Α	2,41	cm2	
в	0,51	ad	
Е	200000	MPa	
Kx	1	ad	
L	1000	mm	
σех	2496,48	MPa	
G	77200	MPa	
J	0	cm4	
Cw	306,63	cm6	
Kt	0,35	ad	
σt	6988,00	MPa	
Fe	2072,34	MPa	

Resistencia a compresión requerida (extraída del modelo)			
Rr 10,46 kN			
Resistencia de diseño a compresión			
Ф	0,85		
Rn	34,39	kN	
Rd	29,23	kN	

¿VERIFICA?	
Rr≤Rd=Φ*Rn	VERIFICA

16.7.2. Montante

RESISTENCIA A COMPRESIÓN-DATOS

Viga reticulada de cubierta - Montante - Perfil PGC 90 x 1.24

1-Resistencia nominal a compresión,			
considerando el efecto de pandeo por			
	flexotorsión		
Ae	1,94	cm2	
Fy	235	MPa	
Fe	2072,34	MPa	
λc	0,34	ad	
Fn	177,27	MPa	
Rn	34,39	kN	
	es no sometid rsión o flexot	•	
Fex	2496,48		
	35,56	Mpa	
rx Ix	30,48	mm cm4	
A	2,41		
E	200000	cm2 MPa	
Kx	1	ad	
L	1000		
Fey	3944,83	mm MPa	
	15,65	mm	
ry Iy	5,9	cm4	
A	2,41	cm2	
E	200000	MPa	
Ку	0,35	ad	
L	1000	mm	
Fcr	2496,48	MPa	
	ies con uno o		
	ometidas a pa		
	n o por flexot	-	
x0	37,74	mm	
r0	5,42	cm	
rx	35,56	mm	
lx	30,48	cm4	
A	2,41	cm2	
	15,65	mm	
ry		1	
ly A	5,9 2,41	cm4 cm2	
в	0,51	ad	
E	200000	MPa	
Kx	1	ad	
L			
	1000 2496,48	mm MPa	
σex			
G	77200 0	MPa	
J		cm4	
Cw	306,63	cm6	
Kt	0,35	ad	
σt	6988,00	MPa	
Fe	2072,34	MPa	

Resistencia a compresión requerida (extraída del modelo)		
Rr 4,36 kN		
Resistencia de diseño a compresión		
Ф	0,85	
Rn	34,39	kN
Rd	29,23	kN

¿VERIFICA?	
Rr≤Rd=Φ*Rn	VERIFICA

16.8. Verificación viga reticulada entrepiso componentes a tracción

16.8.1. Cordón inferior

•	RESIS	STENCIA A TE	RACCIÓN-DAT	ros	
Viga reti	culada de ent	repiso - Cor	dón inferior -	Perfil PGC 14	0 x 1.60

1- Fluencia en la sección bruta		
Ag	3,87	cm2
Fy	235	Мра
Rn	90,945	kN
2- Rotura en la sección neta fuera de		
las uniones		
An	3,26	cm2
Fu	360	MPa
Rn	117,36	kN

Resistencia a tracción requerida		
Rr	41,28 kN	
Resistencia de diseño a tracción		
Ф	0,9	
Rn	90,95	kN
Rd	81,85	kN

¿VERIFICA?	
Rr≤Rd=Φ*Rn	VERIFICA

16.8.2. Diagonal

RESISTENCIA A TRACCIÓN-DATOS

Viga reticulada de entrepiso - Diagonal - Perfil PGC 90 x 1.24

1- Fluencia en la sección bruta		
Ag	2,41	cm2
Fy	235	Мра
Rn	56,64	kN
2- Rotura en la sección neta fuera de		
las uniones		
An	1,94	cm2
Fu	360	MPa
Rn	69,84	kN

Resistencia a tracción requerida			
Rr	Rr 21,89 kN		
Resistencia de diseño a tracción			
Ф	0,9		
Rn	56,64	kN	
Rd	50,97	kN	

¿VERIFICA?	
Rr≤Rd=Φ*Rn VERIFICA	

16.9. Verificación viga reticulada entrepiso componentes a compresión

16.9.1. Cordón superior

RESISTENCIA A COMPRESIÓN-DATOS

Viga reticulada de entrepiso - Cordón superior - Perfil PGC 140 x 2.00

	ia nominal a d	
considerando el efecto de pandeo por		
flexión,	flexotorsión	o torsión
Ae	4,02	cm2
Fy	235	MPa
Fe	3446,15	MPa
λc	0,26	ad
Fn	188,86	MPa
Rn	75,92	kN
	es no sometid	•
_	rsión o flexot	
Fex	5530,30	Мра
rx	52,93	mm
lx	133,36	cm4
А	4,76	cm2
E	200000	MPa
Kx	1	ad
L	1000	mm
Fey	3446,15	MPa
ry	14,62	mm
ly	10,18	cm4
Α	4,76	cm2
Е	200000	MPa
Ky	0,35	ad
L	1000	mm
Fcr	3446,15	MPa
1-2- Seccion	es con uno o	dos ejes de
	ometidas a pa	
torsió	n o por flexot	orsión
х0	32,52	mm
r0	6,38	cm
rx	52,93	mm
lx	133,36	cm4
Α	4,76	cm2
ry	14,62	mm
ly	10,18	cm4
Α	4,76	cm2
в	0,74	ad
E	200000	MPa
Kx	1	ad
L	1000	mm
σех	5530,30	MPa
G	77200	MPa
J	0	cm4
Cw	898,10	cm6
Kt	0,35	ad
σt	7464,26	MPa
Fe	4165,06	MPa

Resistencia a compresión requerida (extraída del modelo)		
Rr 43 kN		
Resistencia de diseño a compresión		
Ф	0,85	
Rn	75,92	kN
Rd	64,53	kN

¿VERIFICA?	
Rr≤Rd=Φ*Rn	VERIFICA

16.9.2. Montante

RESISTENCIA A COMPRESIÓN-DATOS

Viga reticulada de entrepiso - Montante - Perfil PGC 90 x 1.24

1-Resistencia nominal a compresión,				
considerando el efecto de pandeo por flexión, flexotorsión o torsión				
Ae	1,94	cm2		
Fy	235	MPa		
Fe	2072,34	MPa		
λc	0,34	ad		
Fn	177,27	MPa		
Rn	34,39	kN		
1-1 Seccione	s no sometid	las a pandeo		
por to	rsión o flexot	orsión		
Fex	2496,48	Мра		
rx	35,56	mm		
lx	30,48	cm4		
Α	2,41	cm2		
E	200000	MPa		
Kx	1	ad		
L	1000	mm		
Fey	3944,83	MPa		
ry	15,65	mm		
ly	5,9	cm4		
Α	2,41	cm2		
E	200000	MPa		
Ку	0,35	ad		
L	1000	mm		
Fcr	2496,48	MPa		

	,	~		
1-2- Secciones con uno o dos ejes de				
simetría sometidas a pandeo por				
torsió	n o por flexot	orsión		
x0	37,74	mm		
r0	5,42	cm		
rx	35,56	mm		
lx	30,48	cm4		
Α	2,41	cm2		
ry	15,65	mm		
ly	5,9	cm4		
Α	2,41	cm2		
в	0,51	ad		
E	200000	MPa		
Kx	1	ad		
L	1000	mm		
σex	2496,48	MPa		
G	77200	MPa		
J	0	cm4		
Cw	306,63	cm6		
Kt	0,35	ad		
σt	6988,00	MPa		
Fe	2072,34	MPa		

Resistencia a compresión requerida (extraída del modelo)			
Rr 17,20 kN			
Resistencia de diseño a compresión			
Ф	0,85		
Rn	34,39	kN	
Rd	29,23	kN	

¿VERIFICA?		
Rr≤Rd=Φ*Rn	VERIFICA	

16.10. Verificación correas

16.10.1. Correas de cubierta

1-Resiste	ncia nominal a	la sección	Observaciones
lex	20,205	cm4	
ley	3,96	cm4	
lexy	1	cm4	
х	20,67	mm	
У	45,67	mm	
Sex	5,01	cm3	
Fy	235	MPa	
Mn	1,18	kNm	

2-Resistencia	a a pandeo late	ral-torsional	Observaciones
f=Fy	235	MPa	
k	4		
μ	0,3		
t	0,128	cm	
h	8,9488	cm	
Fcr	147,93	MPa	
λ	1,26		
ρ	0,65		
be	23,76	mm	Ancho efectivo
b	36,28	mm	
lex	20,205	cm4	
ley	3,96	cm4	
lexy	1	cm4	
хс	20,93	mm	
ус	45,93	mm	
Fy	235	MPa	
Scx	5,01	cm3	
Cb	1	ad	
х0	35,90	mm	
r0	5,31	cm	
rx	35,82	mm	
lx	22,45	cm4	
Α	1,75	cm2	
ry	15,86	mm	
ly	4,4	cm4	
А	1,75	cm2	
ХC	20	mm	
ус	45	mm	
Sfx	4,99	cm3	
lxy	0	cm4	
σеу	77546,89	MPa	
E	200000	Мра	
Ку	1	ad	
Ly	80	mm	
σt	22802,83	MPa	
G	77200	MPa	
J	0	cm4	
Cw	36,52	cm6	
Kt	1	ad	
Lt	80	mm	
Fe	78371,70	MPa	
Fc	235	MPa	
Mn	1,18	kNm	

Resistencia a flexión requerida			
Mr	0,11 kNm		
Resistencia de diseño a flexión			
Ф	0,9		
Mn	1,18	kNm	
Md	1,06	kNm	

¿VERIFICA?	
Mr≤Md=Φ*Mn	VERIFICA

16.10.2. Correas de entrepiso

1-Resiste	ncia nominal a	la sección	Observaciones
lex	20,205	cm4	
ley	3,96	cm4	
lexy	1	cm4	
х	20,67	mm	
У	45,67	mm	
Sex	5,01	cm3	
Fy	235	MPa	
Mn	1,18	kNm	

2-Resistencia	a a pandeo late	ral-torsional	Observaciones
f=Fy	235	MPa	
k	4		
μ	0,3		
t	0,128	cm	
h	8,9488	cm	
Fcr	147,93	MPa	
λ	1,26		
ρ	0,65		
be	23,76	mm	Ancho efectivo
b	36,28	mm	
lex	20,205	cm4	
ley	3,96	cm4	
lexy	1	cm4	
хс	20,93	mm	
ус	45,93	mm	
Fy	235	MPa	
Scx	5,01	cm3	
Cb	1	ad	
x0	35,90	mm	
r0	5,31	cm	
rx	35,82	mm	
lx	22,45	cm4	
Α	1,75	cm2	
ry	15,86	mm	
ly	4,4	cm4	
Α	1,75	cm2	
xc	20	mm	
ус	45	mm	
Sfx	4,99	cm3	
lxy	0	cm4	
σеу	77546,89	MPa	
E	200000	Mpa	
Ку	1	ad	
Ly	80	mm	
σt	22802,83	MPa	
G	77200	MPa	
J	0	cm4	
Cw	36,52	cm6	
Kt	1	ad	
Lt	80	mm	
Fe	78371,70	MPa	
Fc	235	MPa	
Mn	1,18	kNm	

Resistencia a flexión requerida			
Mr	0,11	kNm	
Resistencia de diseño a flexión			
Ф	0,9		
Mn	1,18	kNm	
Md	1,06	kNm	

¿VERIFICA?	
Mr≤Md=Φ*Mn	VERIFICA

16.11. Verificación flejes

16.11.1. Fleje primer piso

Fluencia del área bruta				
(Ec. C.2-1) $T_{d1} = \phi A_g.F_y$ 33,75 kN				
Rotura en el área efectiva				
(Ec. C.2-2) $T_{d2} = \phi A_n . F_u$ 30,94 kN				

Resistencia a tracción requerida			
Tr	24	kN	
Resistencia de diseño a tracción			
ф	0,9		
Tn	31	kN	
Td	27,84	kN	

¿VERIFICA?		
Tr≤Td=Φ*Tn	VERIFICA	

16.11.2. Fleje planta baja

Fluencia del área bruta				
(Ec. C.2-1) $T_d = \phi A_g.F_y$ 33,75 kN				
Rotura en el área efectiva				
(Ec. C.2-2) $T_d = \phi A_n.F_u$ 30,54 kN				

Resistencia a tracción requerida			
Tr	26,13	kN	
Resistencia de diseño a tracción			
ф	0,9		
Tn	31	kN	
Td	27,49	kN	

¿VERIFICA?		
Tr≤Td=Φ*Tn	VERIFICA	

16.12. Verificación escalera

		Solicitaciones últimas			
Desig.	Lx (m)	Ly (m)	Mx	Му	N
	m	m	kNm	kNm	kN
VME	3,60	3,60	7,21	0,28	-69,04

Resistencia de diseño a compresión			
ф 0,85			
Pn = Ae Fn (10)-1	287,56	kN	
Pd=φ*Pn	244,43	kN	
¿VERIFICA?	VERIFICA		

Resistencia de diseño a flexión			
ф	0,9		
Mn = Se Fy (10)-3	11,87	kNm	
Se	50,51	cm3	
Md=φ*Mn	10,68	kN	
¿VERIFICA?	VERIFICA		

Resistencia de diseño a corte			
Vu	13,27	kN	
ф	0,95		
Vn = Aw Fv (10)-1	56,40	kN	
Vd=φ*Vn	53,58	kN	
¿VERIFICA?	VERIFICA		

RESISTENCIA A FLEXIÓN Y CORTE DATOS				
Vigas escalera m	Vigas escalera metalica // Doble perfil PGC			
100x50x15x2 + de	oble perfil PGU 10	05x50x2,5		
Mu	7,21	kN		
Фb	0,9	ad		
Mn	11,87	kN		
Vu	13,27	kNm		
Фv	0,95	ad		
Vn	56,4	kNm		
Resultado	0,52	ad		
¿Verifica?	¿Verifica? VERIFICA			

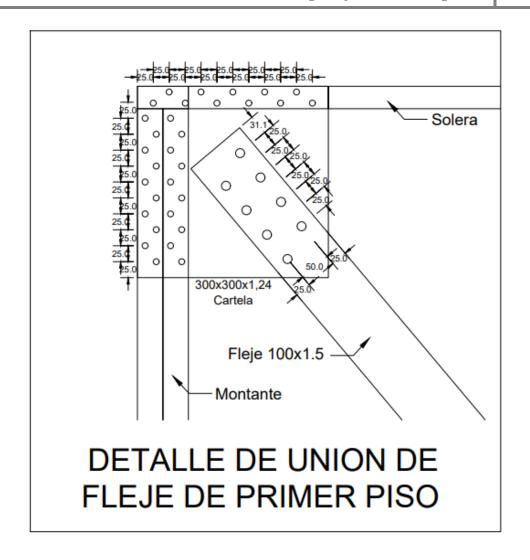
RESISTENCIA A FLEXO-COMPRESIÓN DATOS				
Vigas escalera m	Vigas escalera metalica // Doble perfil PGC			
100x50x15x2 + de	oble perfil PGU 10	05x50x2,5		
Pu	69,04	kN		
Фс	0,85	ad		
Pn	287,56	kN		
Mu	7,21	kNm		
Фb	0,9	ad		
Mn	11,87	kNm		
Resultado	0,39	ad		
¿Verifica? VERIFICA				

16.13. Verificación uniones

16.13.1. Unión fleje superior

Verificación a corte de los tornillos				
Limitaciones por volcamiento del tornillo y aplastamiento de la chapa				
t1	1,50	mm		
t2 1,24 mm Cartela				

t ₂ /t ₁	0,83	
φt	4,83	mm


Para t ₂ /t ₁ <1				
(Ec. E.4.3.1-1)	P _{ns} 1	5,60	kN	
(Ec. E.4.3.1-2)	P _{ns} 2'	6,46	kN	
(Ec. E.4.3.1-3)	P _{ns} 3'	5,34	kN	
Para t ₂ /t ₁ >2.5				
(Ec. E.4.3.1-4)	P _{ns} 2"	6,46	kN	
(Ec. E.4.3.1-5)	P _{ns} 3"	5,34	kN	

P _{ns}	5,34	kN
ф	0,45	
P_d	2,40	kN

Limitación por la distancia a borde				
(Ec. E.4.3.2-1) P _{ns} 5,94 kN				
е	12,00	mm		
ф	0,45			
P _d		2,67	kN	

Resistencia al corte de los tornillos				
Tornillo 10-16				
(Ec. E.4.3.3-1)-P _{ns} 2,72 kN				
P _{ss} 3,40 kN				
ф 0,45				
P _d 1,22 kN				

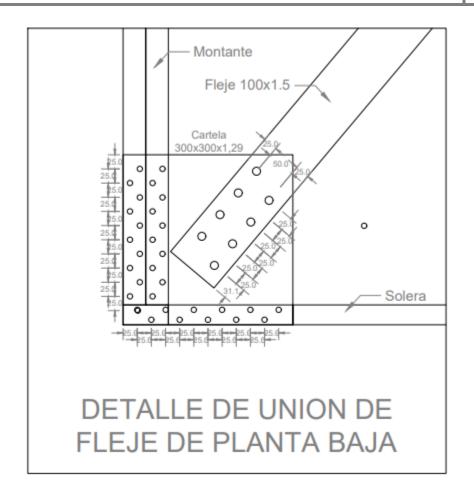
Cantidad de tornillos necesarios	7,08	u
Se adoptan	8	u

16.13.2. Unión fleje inferior

Verificación a corte de los tornillos Limitaciones por volcamiento del tornillo y aplastamiento de la chapa

t1	1,50	mm	
t2	1,29	mm	Cartel 300x300

t ₂ /t ₁	0,86	
φt	4,80	mm


Para t ₂ /t ₁ <1				
(Ec. E.4.3.1-1)	P _{ns} 1	5,58	kN	
(Ec. E.4.3.1-2)	P _{ns} 2'	6,42	kN	
(Ec. E.4.3.1-3)	P _{ns} 3'	5,52	kN	
Para t ₂ /t ₁ >2.5				
(Ec. E.4.3.1-4)	P _{ns} 2"	6,42	kN	
(Ec. E.4.3.1-5)	P _{ns} 3"	5,52	kN	

P _{ns}	5,517072	kN
ф	0,45	
P_d	2,48	kN

Limitación por la distancia a borde				
(Ec. E.4.3.2-1) P _{ns} 5,94 kN				
е		12,00	mm	
ф	0,45			
P _d		2,67	kN	

Resistencia al corte de los tornillos			
Tornillo 10-16			
(Ec. E.4.3.3-1)	P _{ns}	5,12	kN
P _{ss}		6,40	kN
ф		0,45	
P_d		2,30	kN

Cantidad de tornillos necesarios	7,86	u
Se adoptan	8	u

16.13.3. Unión soldada de montante a cordón de la viga reticulada

Fu: para perfil C

Acero perfil F24 =235MPa

Tamaño máximo del filete

- √ e= espesor ala del perfil
- ✓ d max =16-2= 14mm

Tamaño mínimo de filete

✓ d min=6mm

Adopto d=7,5

Resistencia de diseño/cm de filete

✓ Para tracción

$$R_{c1} = \phi * \frac{F_w A_w}{10} = 0.9 * 235MPa * \frac{0.53}{10} = 11.21 kN$$

✓ Longitud necesaria:

$$L_T = \frac{41,28 \ kN}{11,21kN} = 4,68 \ cm$$

16.13.4. Unión soldada de diagonal a cordón

Fu: para perfil C

Acero perfil F24 =235MPa

Tamaño máximo del filete

- √ e= espesor ala del perfil
- ✓ dmax=16-2= 14mm

Tamaño mínimo de filete

✓ dmin=6mm

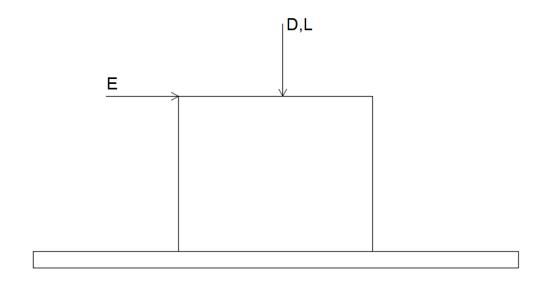
Adopto d=7,5

✓ Resistencia de diseño/cm de filete

Para tracción

$$R_{c1} = \phi * \frac{F_w A_w}{10} = 0.9 * 235MPa * \frac{0.53}{10} = 11.21 \text{ kN}$$

✓ Longitud necesaria:


$$L_T = \frac{22 \ kN}{11,21kN} = 2 \ cm$$

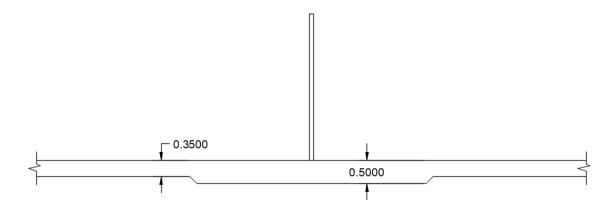
17. PLATEA DE FUNDACIÓN

A partir del estudio de suelos realizado y del tipo de construcción es que se opta por utilizar como fundación una platea de cimentación de H°A°. Las plateas actúan como planos rígidos y tienen la propiedad de repartir uniformemente las cargas sobre el terreno, que se ve menos solicitado ante cargas puntuales de columnas, evitando asientos diferenciales en suelos con baja capacidad portante.

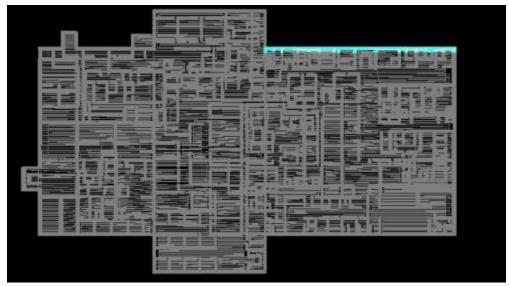
Para determinar el espesor de la misma y la cantidad de armadura necesaria se comenzó con el análisis de las distintas líneas estructurales que componen al edificio junto con las acciones a las que se encuentran sometidas. A partir de dichos datos se obtuvo la capacidad nominal de la fundación donde la misma se compara con la capacidad requerida.

La resistencia requerida surge de considerar las acciones que actúan en la línea estructural, las cuales se observan en la siguiente figura y fueron extraídas del modelo realizado en el software Advance.

Al ser la fuerza sísmica una acción horizontal, la misma genera un momento flector. El sistema formado por la carga vertical P y el momento M es estáticamente equivalente a una carga vertical excéntrica de valor P ubicada a una distancia "e" denominada excentricidad. El lado de la cimentación se corrige por dicha excentricidad quedando así un área efectiva A'. El centro de gravedad de la misma debe coincidir con la posición de la carga excéntrica. Cuando se trata de momentos originados por fuerzas sísmicas, normalmente no se considera el efecto de ambos sentidos simultáneamente.



Una vez obtenida dicha área efectiva se obtiene la carga por unidad de superficie determinando así las distintas combinaciones de cargas. En el caso de la combinación de carga que no tiene en cuenta el sismo el área a considerar es la total. A partir de la combinación de carga más desfavorable surge la capacidad requerida que se compara con la capacidad nominal de la fundación.


Una vez concluido tal paso se prosigue con la determinación de la armadura necesaria correspondiente a cada línea.

Una vez analizadas las distintas líneas estructurales en ambas direcciones se toma el área de acero necesaria más desfavorable tanto en dirección "x" como en dirección "y" para determinar el diámetro y separación de barras a utilizar en toda la platea. Se adopta una armadura superior e inferior de base junto con armadura de refuerzo para satisfacer las demandas máximas de momento.

Con respecto al espesor por cálculo se obtuvo un valor necesario de 35 cm. No obstante, debido a la utilización de anclajes bajo las líneas estructurales dicha dimensión se aumento a 50cm, manteniendo los 35cm en el resto de la platea. En la siguiente figura se puede observar la variación de espesor bajo línea estructural respecto al resto de la cimentación.

En las siguientes tablas se adjunta el proceso descripto anteriormente.

Línea estructural más desfavorable en dirección "x"

DIMENSIONAMIENTO PLATEA				
Parámetros geométricos				
Largo franja	L	50	m	
Ancho franja	В	5,5	m	
Espesor franja	е	0,5	m	
Parámetros geotécnicos				
Cohesión	С	0	ad	
Ángulo de fricción interna	Ф	10	0	
Peso específico del suelo	γ	16,6	kN/m3	
Sobrecarga	q'	8,3	kN/m2	

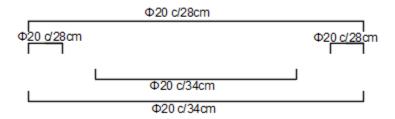
Cálculo capacidad de carga para combinaciones sin sismo			
	Nq	2,47	ad
Factores de capacidad de carga	Nc	8,34	ad
	Nγ	1,22	ad
Factores de forma Factores de profundidad	Fqs	1,02	ad
	Fcs	1,03	ad
	Fγs	0,96	ad
	Fqd	1,02	ad
	Fcd	1,04	ad
	Fγd	1	ad
Capacidad de carga última	qu	74,80	kN/m2

Para combinaciones de carga que no incluyen sismo			
Capacidad nominal de la fundación	Sn	7,48	t/m2
Factor de reducción de resistencia	Ф	0,4	ad
Ф*Sn		2,99	t/m2
Sr		2,77	t/m2
¿VERIFICA?		VERIFICA	

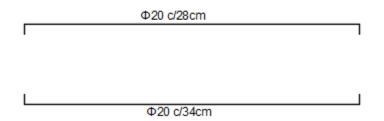
Cálculo capacidad de carga para combinaciones con sismo				
Factores de capacidad de carga	Nq	2,47	ad	
	Nc	8,34	ad	
	Νγ	1,22	ad	
Factores de forma	Fqs	1,02	ad	
	Fcs	1,03	ad	
	Fγs	0,96	ad	
Factores de profundidad	Fqd	1,02	ad	
	Fcd	1,04	ad	
	Fγd	1	ad	
Capacidad de carga última	qu	74,80	kN/m2	

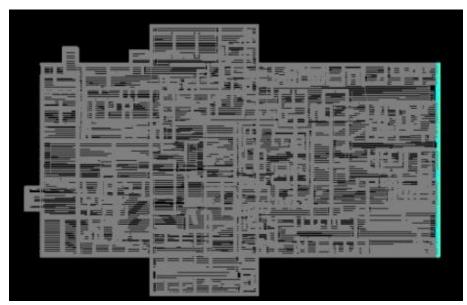
Para combinaciones de carga que incluyen sismo				
Capacidad nominal de la fundación	Sn	7,48	t/m2	
Factor de reducción de resistencia	Ф	0,7	ad	
Ф*Sn	5,24	t/m2		
Sr	4,28	t/m2		
¿VERIFICA	VERI	FICA		

Acciones gravitatorias				
D	132	t		
L	129	t		
Peso platea	330	t		
Fuerza sísmica 1	° piso			
E	51	t		
Fuerza sísmica	PB			
E	60	t		
Cálculo área efe	ectiva			
M	519	tm		
ey	0,88	m		
Aef	123,21	m2		


Cálculo armadura flexión dirección x					
	1,2D+1,6L	2,77	t/m2		
Combinaciones de carga	0,8D+0,5L-Ehx	3,52	t/m2		
	1D+0,5L+Ehx	4,27	t/m2		
	0,8D+0,5L-Ehy	3,51	t/m2		
	1D+0,5L+Ehy	4,28	t/m2		

Datos				
fy	4,2	t/cm2		
f'c	0,4	t/cm2		
Recubrimiento	7	cm		
d	43	cm		
b	100	cm		
Franja	Extr	ema		
Mnx- apoyo exterior	744	tm/m		
Mnx+ centro de franja	1082	tm/m		
Mnx-apoyo interior	1190	tm/m		


	Resolución ecuación de segundo orden/Diseño armadura							
a	0,06	t/cm2	а	0,06	t/cm2	а	0,06	t/cm2
b	-180,60	t/cm	b	-180,60	t/cm	b	-180,60	t/cm
С	74364	tcm/m	С	108166	tcm/m	С	118982	tcm/m
As1	2429,38	cm2/m	As1	2084,84	cm2/m	As1	1923,03	cm2/m
As2 Mn-	495,79	cm2/m	As2 Mn+	840,33	cm2/m	As2 Mn-	1002,14	cm2/m
Diámetro de barra a utilizar	20	mm	Diámetro de barra a utilizar	20	mm	Diámetro de barra a utilizar	20	mm
Cantidad de barras	158	barras	Cantidad de barras	268	barras	Cantidad de barras	319	barras
Separación barras	30	cm	Separación barras	17	cm	Separación barras	14	cm


	Discosi és su					
	Dirección x					
Caso más desfavorable	cada en la pa	rte Sur del				
Caso mas destavorable	edificio tal como se obs	serva en la im	agen adjunta			
	Armadura superior (M	-)				
Sección n	ecesaria	1002	cm2/m			
Diámetro de b	arra adoptado	20	mm			
Sepa	ración bajo líneas estru	cturales				
Separación entre barra	s (armadura de base +	4.4				
armadura d	e refuerzo)	14	cm			
	Separación resto de pla	tea				
Separación entre barras (armadura de base)		28	cm			
	Armadura inferior (M+)					
Sección n	ecesaria	840	cm2/m			
Diámetro de b	arra adoptado	20	mm			
Sepa	ración bajo líneas estru	cturales				
Separación entre barra	s (armadura de base +	17				
armadura de refuerzo)		17	cm			
Separación resto de platea						
Separación entre barra	s (armadura de base)	34	cm			

DISTRIBUCIÓN DE ARMADURA BAJO LÍNEAS ESTRUCTURALES DIRECCIÓN X

DISTRIBUCIÓN DE ARMADURA BAJO LÍNEAS NO ESTRUCTURALES DIRECCIÓNX

Línea estructural más desfavorable en dirección "y"

PREDI						
P	Parámetros geométricos					
Largo franja	L	50	m			
Ancho franja	В	6,5	m			
Espesor franja	е	0,5	m			
P	arámetros geo	técnicos				
Cohesión	С	0	ad			
Ángulo de fricción interna	Ф	10	0			
Peso específico del suelo	γ	16,6	kN/m3			
Sobrecarga	q'	8,3	kN/m2			

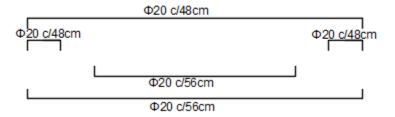
Cálculo capacidad de carga para combinaciones sin sismo					
	Nq	2,47	ad		
Factores de capacidad de carga	Nc	8,34	ad		
	Νγ	1,22	ad		
Factores de forma	Fqs	1,02	ad		
	Fcs	1,04	ad		
	Fγs	0,95	ad		
	Fqd	1,02	ad		
Factores de profundidad	Fcd	1,03	ad		
	Fγd	1	ad		
Capacidad de carga última	qu	83,98	kN/m2		

Para combinaciones de carga que no incluyen sismo				
Capacidad nominal de la fundación	Sn	8,40	t/m2	
Factor de reducción de resistencia Φ 0,4 ad				
Ф*Sn	3,36	t/m2		
Sr	3,16	t/m2		
¿VERIFICA?			VERIFICA	

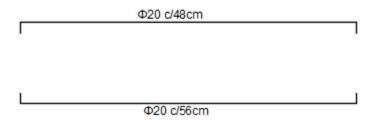
Cálculo capacidad de carga para combinaciones con sismo					
	Nq	2,47	ad		
Factores de capacidad de carga	Nc	8,34	ad		
	Νγ	1,22	ad		
Factores de forma	Fqs	1,02	ad		
	Fcs	1,04	ad		
	Fγs	0,95	ad		
	Fqd	1,02	ad		
Factores de profundidad	Fcd	1,03	ad		
	Fγd	1	ad		
Capacidad de carga última	qu	83,98	kN/m2		

Para combinaciones de carga que incluyen sismo				
Capacidad nominal de la fundación	Sn	8,40	t/m2	
Factor de reducción de resistencia	Ф	0,7	ad	
Ф*Sn	5,88	t/m2		
Sr	0,95	t/m2		
¿VERIFICA	VERIF	ICA		

Acciones gravitatorias				
D	145	t		
L	241	t		
Peso platea	390	t		
Fuerza sísmica :	L° piso			
E	106	t		
Fuerza sísmic	a PB			
E	90	t		
Cálculo área ef	ectiva			
M	967	tm		
ey	1,25	m		
Aef	308,80	m2		


Cálculo armadura flexión dirección y						
	1,2D+1,6L+0,5Lr	3,16	t/m2			
	0,8D+0,5L-Ehx	0,68	t/m2			
Combinaciones de carga	1D+0,5L+Ehx	0,95	t/m2			
	0,8D+0,5L-Ehy	0,74	t/m2			
	1D+0,5L+Ehy	0,88	t/m2			

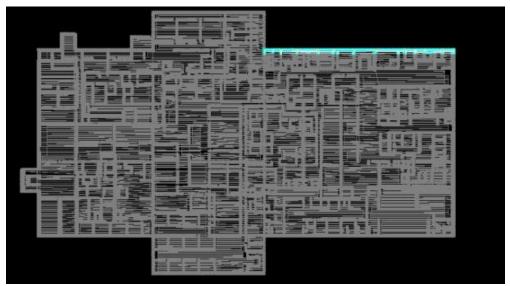
Datos						
fy	4,2	t/cm2				
f'c	0,4	t/cm2				
Recubrimiento	7	cm				
d	43	cm				
b	100	cm				
Franja	Extrema					
Mny- apoyo exterior	549	tm/m				
Mny+ centro de franja	798	tm/m				
Mny-apoyo interior	878	tm/m				


Resolución ecuación de segundo orden/Diseño armadura								
а	0,06	t/cm2	а	0,06	t/cm2	а	0,06	t/cm2
b	-180,60	t/cm	b	-180,60	t/cm	b	-180,60	t/cm
С	54885	tcm/m	С	79832	tcm/m	С	87815	tcm/m
As1	2580,70	cm2/m	As1	2382,43	cm2/m	As1	2309,23	cm2/m
As2 Mn-	344,47	cm2/m	As2 Mn+	542,74	cm2/m	As2 Mn-	615,94	cm2/m
Diámetro de barra a utilizar	20	mm	Diámetro de barra a utilizar	20	mm	Diámetro de barra a utilizar	20	mm
Cantidad de barras	110	barras	Cantidad de barras	173	barras	Cantidad de barras	197	barras
Separación barras	44	cm	Separación barras	28	cm	Separación barras	24	cm

	Dirección y							
Caso más desfavorable Línea estructural ubicada en la parte Oeste del edificio tal como se observa en la imagen adjunta								
	Armadura superior (M	-)						
Sección n	ecesaria	616	cm2/m					
Diámetro de b	arra adoptado	20	mm					
Sepa	ración bajo líneas estru	cturales						
Separación entre barra armadura d	24	cm						
Separación resto de platea								
Separación entre barra	48	cm						
	Armadura inferior (M-	+)						
Sección n	ecesaria	543	cm2/m					
Diámetro de b	arra adoptado	20	mm					
Sepa	ración bajo líneas estru	cturales						
Separación entre barra armadura d	28	cm						
	Separación resto de platea							
Separación entre barra	s (armadura de base)	56	cm					

DISTRIBUCIÓN DE ARMADURA BAJO LÍNEAS ESTRUCTURALES DIRECCIÓNY

DISTRIBUCIÓN DE ARMADURA BAJO LÍNEAS NO ESTRUCTURALES DIRECCIÓN Y

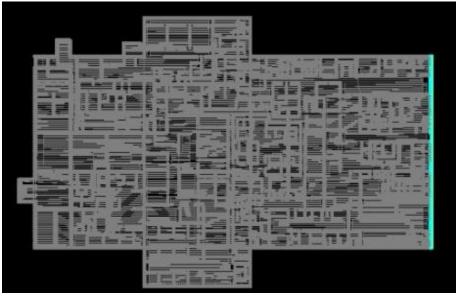


Una vez definida las características de la platea de fundación se realiza un análisis de asentamientos ante las cargas de servicio D+L.

El asentamiento puede ser de dos tipos:

- Asentamiento de consolidación (dependiente del tiempo) de la(s) capa(s) de arcilla ubicada(s) debajo de la cimentación. Puede demorar años (generalmente 3 a 10) hasta siglos. Para suelos finos (arcillas o limos) saturados.
- Asentamiento elástico inmediato, que se produce más o menos en un corto tiempo después que la cimentación se somete a la carga estructural dentro de aproximadamente 7 días tras aplicar la carga. Para suelos gruesos o finos no saturados.

En las siguientes tablas se adjunta el proceso de cálculo de asentamientos para las líneas estructurales más desfavorables tanto en dirección "x" como en dirección "y" mencionadas anteriormente.



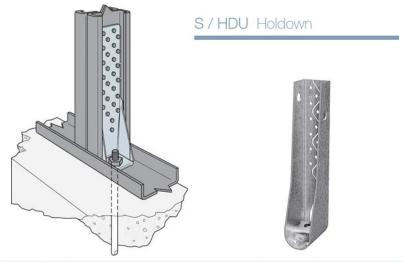
Línea estructural más desfavorable en dirección "x"

FRANJA EN DIRECCIÓN "X"							
DATOS							
В	B 5,5 m						
q0	2609	KN					
Df	0,5	m					
αr	2,1	ad					

	PROFUNDIDAD	CAPA	Δσ	mv	μs	N (SPT)	Es [kPa]	Se	Sc	S
	0		86,25			7,5	4050		0,00010648	0,000106
	0,05		9,80			7,5	4050		1,21E-05	0,000012
	0,1		9,80			7,5	4050		1,21E-05	0,000012
	0,15		9,80			7,5	4050		1,2099E-05	0,000012
	0,2		9,80			7,5	4050		1,2098E-05	0,000012
	0,25		9,80			7,5	4050		1,2096E-05	0,000012
	0,3		9,80			7,5	4050		1,2093E-05	0,000012
	0,35		9,79			7,5	4050		1,2089E-05	0,000012
	0,4		9,79			7,5	4050		1,2084E-05	0,000012
	0,45		9,78			7,5	4050		1,2078E-05	0,000012
	0,5		9,78			7,5	4050		1,207E-05	0,000012
	0,55		9,77			7,5	4050		1,2061E-05	0,000012
	0,6		9,76			7,5	4050		1,2049E-05	0,000012
	0,65		9,75			7,5	4050		1,2036E-05	0,000012
	0,7		9,74			7,5	4050		1,2021E-05	0,000012
	0,75		9,72			7,5	4050		1,2004E-05	0,000012
NF+	0,8	ML	9,71	0,00024691	-	7,5	4050	0	1,1985E-05	0,000012
	0,85		9,69			7,5	4050		1,1964E-05	0,000012
	0,9		9,67			7,5	4050		1,1941E-05	0,000012
	0,95		9,65			7,5	4050		1,1915E-05	0,000012
	1		9,63			6	3600		1,1887E-05	0,000012
	1,05		9,60			6	3600		1,1857E-05	0,000012
	1,1		9,58			6	3600		1,1825E-05	0,000012
	1,15		9,55			6	3600		1,1791E-05	0,000012
	1,2		9,52			6	3600		1,1754E-05	0,000012
	1,25		9,49			6	3600		1,1715E-05	0,000012
	1,3		9,46			6	3600		1,1674E-05	0,000012
	1,35		9,42			6	3600		1,1632E-05	0,000012
	1,4		9,39			6	3600		1,1587E-05	0,000012
	1,45		9,35			6	3600		1,154E-05	0,000012
	1,5		9,31			6	3600		1,1491E-05	0,000011
	1,55		9,27			6	3600		1,1441E-05	0,000011
	1,6		9,23			6	3600		1,1389E-05	0,000011

ASENTAMIENTO TOTAL						
Ctatal	0,0005	m				
Stotal	0,49	mm				

Línea estructural más desfavorable en dirección "y"


Franja en dirección "y"							
DATOS							
В	B 6,5 m						
q0	3858	KN					
Df	0,5	m					
αr	1,8	ad					

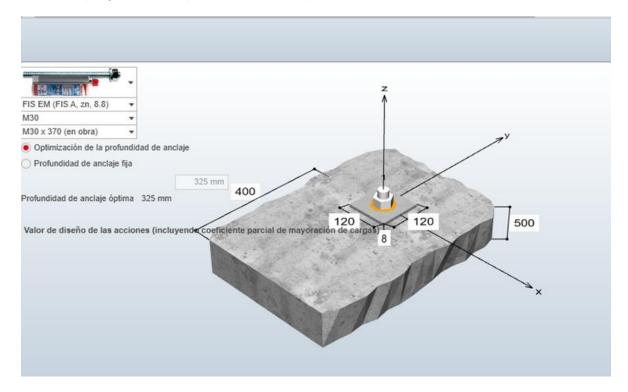
	PROFUNDIDAD	CAPA	Δσ	mv	μs	N (SPT)	Es [kPa]	Se	Sc	S					
	0		91,31			7,5	4050		0,00011273	0,000113					
	0,05		12,50			7,5	4050		1,5427E-05	0,000015					
	0,1		12,50			7,5	4050		1,5426E-05	0,000015					
	0,15		12,50			7,5	4050		1,5426E-05	0,000015					
	0,2		12,49			7,5	4050		1,5425E-05	0,000015					
	0,25		12,49			7,5	4050		1,5424E-05	0,000015					
	0,3		12,49			7,5	4050		1,5422E-05	0,000015					
	0,35		12,49			7,5	4050		1,5419E-05	0,000015					
	0,4		12,49			7,5	4050		1,5415E-05	0,000015					
	0,45		12,48			7,5	4050		1,541E-05	0,000015					
	0,5		12,48			7,5	4050		1,5403E-05	0,000015					
	0,55		12,47			7,5	4050		1,5396E-05	0,000015					
	0,6		12,46			7,5	4050		1,5387E-05	0,000015					
	0,65		12,46			7,5	4050		1,5377E-05	0,000015					
	0,7		12,45								7,5	4050		1,5365E-05	0,000015
	0,75		12,43			7,5	4050		1,5351E-05	0,000015					
NF+	0,8	ML	12,42	0,00024691	-	7,5	4050	0	1,5336E-05	0,000015					
	0,85		12,41		7,5	7,5	4050		1,5318E-05	0,000015					
	0,9		12,39	12,39	_		7,5	4050		1,5299E-05	0,000015				
	0,95		12,38			7,5	4050		1,5278E-05	0,000015					
	1		12,36			6	3600		1,5255E-05	0,000015					
	1,05		12,34			6	3600		1,5231E-05	0,000015					
	1,1		12,32			6	3600		1,5204E-05	0,000015					
	1,15		12,29			6	3600		1,5175E-05	0,000015					
	1,2		12,27			6	3600		1,5144E-05	0,000015					
	1,25		12,24			6	3600		1,5111E-05	0,000015					
	1,3		12,21			6	3600		1,5076E-05	0,000015					
	1,35		12,18				6	3600		1,5039E-05	0,000015				
	1,4		12,15 12,12 12,08			6	3600		1,5E-05	0,000015					
	1,45					6	3600		1,4959E-05	0,000015					
	1,5			[<u> </u>			6	3600		1,4916E-05	0,000015			
	1,55		12,05			6	3600		1,4872E-05	0,000015					
	1,6		12,01			6	3600		1,4825E-05	0,000015					

ASENTAMIENTO TOTAL					
Ctatal	0,0006	m			
Stotal	0,60	mm			

ANCLAJES 18.

Anclaje para acciones verticales

		Faste	eners		ASD	(lb.)	LRFI	D (lb.)		
Model	H (in.)	Anchor Bolt Diameter ¹ (in.)	Stud Fasteners ⁷	Stud Member Thickness ² mil (ga.)	Tension Load	Deflection at ASD Load ⁵	Tension Load	Deflection at LRFD Load ⁵	Nominal Tension Load ⁶ (lb.)	
				2-33 (2-20)	2,320	0.093	3,705	0.149	5,685	
CUIDITA	77/8	5/8	(0) 114.4	2-43 (2-18)	3,825	0.115	6,105	0.190	9,365	
S/HDU4	1 1/8	7/8	(6) #14	2-54 (2-16)	3,970	0.093	6,345	0.156	9,730	
				Steel fixture	4,470	0.063	7,165	0.103	12,120	
			8/		2-33 (2-20)	4,895	0.125	8,495	0.250	10,470
CAIDIIC	102/	5/8		(40) 844	2-43 (2-18)	6,125	0.119	9,690	0.250	15,460
S/HDU6	10%		(12) #14	2-54 (2-16)	6,125	0.108	9,785	0.234	15,005	
				Steel fixture	5,995	0.060	9,580	0.136	14,695	
				2-33 (2-20)	6,965	0.103	11,125	0.189	13,165	
S/HDU9	12%	7/8	(40) 844	2-43 (2-18)	9,255	0.125	15,485	0.250	21,810	
5/HD09	12.78	1/8	(18) #14	2-54 (2-16)	9,990	0.106	15,960	0.225	24,480	
				Steel fixture	12,715	0.125	20,510	0.177	31,455	
				2-33 (2-20)	6,965	0.103	11,125	0.189	13,165	
		7/8	(27) #14	2-43 (2-18)	9,595	0.096	15,330	0.162	23,515	
CAIDIHA	105/			2-54 (2-16)	9,675	0.110	15,460	0.158	23,710	
S/HDU11	16%			2-43 (2-18)6	11,100	0.125	17,500	0.250	24,955	
		with heavy	(27) #14	2-54 (2-16)6	12,175	0.125	19,445	0.243	29,825	
		hex nut	0.0000000000000000000000000000000000000	Steel fixture ⁶	12,945	0.111	20,680	0.163	31,715	


Decistoreia LIDI I	20680	lb
Resistencia HDU	90,99	kN

	Según tabla			
Cantidad de Tornillos	27			
#	14			

Esfuerzos en el anclaje al concreto del HDU							
Corte 46,65 kN							
Tracción	84,11	kN					

Anclaje químico

Se usó el programa de la plataforma fischer para modelar la unión.

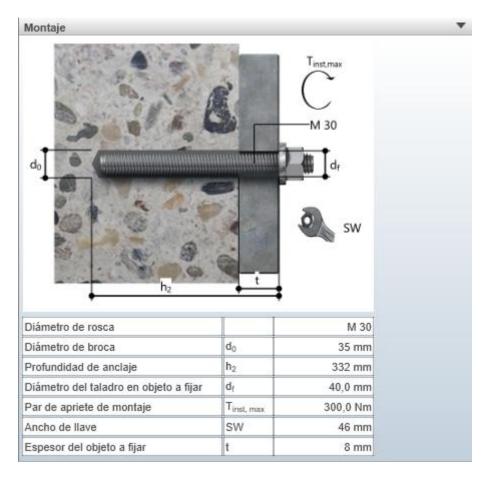
Tracción

Rotura del acero	+ S						
Aprovechamiento	βN,s 28,10 %						
Anclajes considerados		1					
NRk,s,seis,C1	kN	449,00					
aseis	-	1,00					
γMs	-	1,50					
NRd,s,seis	kN	299,33					
N ^h Sd	kN	84,11					

Fallo combinado por rotura de cono y arranque	•						
Aprovechamiento	βΝ,р	74,00 %					
Anclajes considerados		1					
TRk,p,seis,C1	N/mm²	6,7					
aseis	-	1,00					
N ⁰ Rk,p,seis,C1	kN	204,59					
A ⁰ p,N	mm²	576.081					
A _{p,N}	mm²	576.081					
ψs,Νp	-	1,000					
Ψg,Np	- 1,000						
Ψес,Npx	-	1,000					
Ψес, N py	-	1,000					
Ψre,Np	-	1,000					
N _{Rk,p}	kN	204,59					
γМр	- 1,80						
NRd,p,seis	kN	113,66					
N ^g Sd	kN 84,11						

Rotura del cono de hormigón	•						
Aprovechamiento	βΝ,с	49,54 %					
Anclajes considerados		1					
A ⁰ c,N	mm²	944.784					
A _{C,N}	mm²	861.192					
N ⁰ Rk,c	kN	416,51					
Ψs,N	-	0,947					
Ψre,N	-	1,000					
Ψec,Nx	-	1,000					
Ψec,Ny	-	1,000					
NRk,c,seis,C1	kN	305,58					
aseis	-	0,85					
γMc	-	1,80					
NRd,c,seis	kN	169,76					
N ⁹ Sd	kN	84,11					

Rotura por fisuración del hormigón							
Aprovechamiento	βN,sp 53,88 %						
Anclajes considerados		1					
A ⁰ c,N	mm²	2.144.702					
Ac,N	mm²	1.658.143					
N ⁰ Rk,sp	kN	416,51					
Ψs,Ν	-	0,864					
Ψre,N	-	1,000					
Ψec,Nx	-	1,000					
Ψec,Ny	-	1,000					
Ψh,sp	-	1,010					
NRk,sp,seis,C1	kN	281,00					
aseis	-	1,00					
YMsp	-	1,80					
NRd,sp,seis	kN	156,11					
N ⁹ Sd	kN	84,11					


• Corte

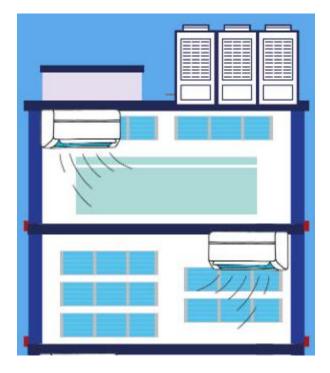
Rotura del acero sin flexión	+						
Aprovechamiento	βV,s 25,92 %						
Anclajes considerados		1					
VRk,s,seis,C1	kN 225,00						
αgap	- 1,00						
aseis	-	1,00					
γMs	-	1,25					
VRd,s,seis	kN	180,00					
V ^h Sd	kN 46,65						

Rotura por efecto palanca	+						
Aprovechamiento	βV,cp 20,12 %						
Anclajes considerados		1					
A ⁰ pN	mm²	576.081					
A _{p,N}	mm²	576.081					
N ⁰ Rk,p	kN	204,59					
Ψs,Np	-	1,000					
Ψg,Np	-	1,000					
Ψre,Np	-	1,000					
Ψес,Npx	-	1,000					
Ψес,Nру	-	1,000					
NRk,p	kN	204,59					
Кср	-	2,00					
VRk,cp,seis,C1	kN	347,81					
αgap	-	1,00					
aseis	-	0,85					
γМср	-	1,50					
VRd,cp,seis	kN	231,87					
VSd	kN 46,65						

Rotura del hormigón en dirección al borde	—						
Aprovechamiento	βV,c 13,18 %						
Anclajes considerados		1					
V ⁰ Rk,c	kN	260,18					
A ⁰ c,V	mm²	720.000					
Ac,V	mm²	480.000					
Ψs,V	-	1,000					
Ψα,V	- 2,500						
Ψh,V	- 1,225						
Ψec,V	-	1,000					
Ψre,V	-	1,000					
VRk,c,seis,C1	kN	531,09					
αgap	-	1,00					
aseis	-	1,00					
γMc	-	1,50					
VRd,c,seis	kN	354,06					
V ^g Sd	kN	46,65					

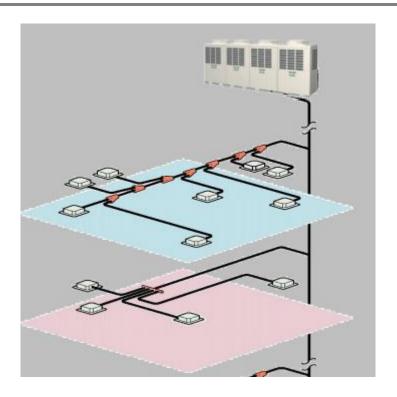
Accesorios

Accesorios
M30 x 370
FIS EM 390 S
FIS MR Plus
Tubo de extensión de 9mm
ayuda para inyección 35 mm
pistola de inyección FIS DM S
Herramienta para limpieza con aire comprimido
aire comprimido (sin lubricantes), min. 6 bar de presión
tubo prolongador FIS de 9mm
boquilla para aire comprimido D30-D35
Cepillo para perforación-Ø 35 mm
SDS herramienta cepillo M8
Broca para taladro a percusión SDS Max IV 35/450/570


19. SISTEMA DE CLIMATIZACIÓN

El consumo de energía por metro cuadrado en un hospital puede llegar a triplicar el consumo promedio de un edificio de oficinas. Por lo tanto se debe pensar cómo instalar los sistemas de climatización, en qué sectores y qué equipos utilizar. Además es necesario garantizar los más estrictos niveles de salud y confort, los cuales contribuyen significativamente al proceso de recuperación del paciente.

Un hospital es un centro de ocupación permanente: 24 horas al día, los 365 días del año, lo que obliga a tener climatizado el edificio de forma continua. Además, presenta múltiples recintos con diferentes funcionalidades, cada una de ellas con demandas energéticas distintas. Por lo tanto, se trata de construcciones con un alto grado de demanda energética las cuales deben de ser muy flexibles en su proyección ya que los continuos cambios tecnológicos en los medios de diagnóstico, obligan a que el edificio tenga una gran flexibilidad. Aproximadamente el 50% de la energía que consume un hospital corresponde a la climatización del edificio por lo que es fundamental encarar el proyecto en forma integral, desde realizar un óptimo diseño arquitectónico teniendo como parámetros principales el aislamiento térmico, la hermeticidad y una correcta orientación así como también la eficiencia de los equipos.


Por lo tanto para reducir el consumo de energía en el presente proyecto, además de monitorear de manera confiable su funcionamiento y optimización se optó por utilizar el sistema de climatización VRV (Volumen refrigerante variable).

El sistema mencionado maneja y controla un flujo de gas refrigerante variable. Su funcionamiento es a demanda mediante la regulación del caudal de flujo de refrigerante que se envía desde una misma unidad exterior a distintas unidades interiores. Para que esto suceda, debe variar la velocidad de los compresores de la unidad exterior por medio de un "control inverter". Dicho control actúa sobre el funcionamiento de los compresores de modo que produce una variación de potencia del motor y sus revoluciones. Al variar la potencia, la cantidad de fluido refrigerante bombeado aumenta o disminuye proporcionalmente según la proximidad de temperatura del local respecto de la temperatura de confort adaptándose así a la demanda de cada unidad interior.

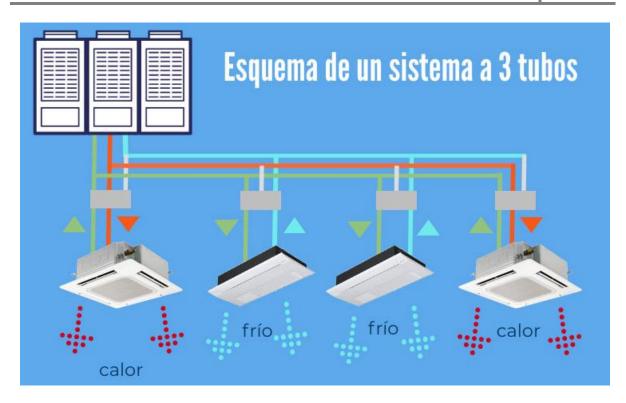
Principales beneficios:

- Al tener una baja inercia térmica se llega a la temperatura de confort de manera inmediata.
- Se ajusta la capacidad del sistema a la demanda de la carga térmica del local a acondicionar teniendo una programación independiente de la temperatura en cada unidad interior.
- Utiliza refrigerante ecológico R410A.
- Fácil adaptación al cambio de diseños ya que por la simpleza de su trazado frigorífico y cableado de control, permite ampliaciones o modificaciones en forma muy versátil.
- Mantenimiento mínimo donde se reduce prácticamente a la limpieza de los filtros de aire de las unidades interiores. Al ser un hospital, dichas unidades deben contar con filtros de alta eficiencia para filtrar partículas muy finas denominados filtros HEPA.
- Posee un bajo nivel sonoro de operación tanto de las unidades exteriores como las interiores.
- Espacios mínimos para el montaje tanto de las unidades exteriores como interiores así como también se tiene una reducción notable de los espacios necesarios para la colocación de tuberías respecto a sistemas convencionales de aire. Se tiene un solo montante de bajada de cañerías y luego una distribución por ramales horizontales a través del cielorraso.

19.1. Zonificación

Para que el sistema se acomode a las necesidades térmicas del hospital es necesario zonificar según la temperatura de confort requerida en los locales. En la siguiente tabla se observan las diferentes zonas, las cuales fueron determinadas anteriormente.

Local	¿Acondicionado?	Régimen
Administración	Si	8 a 20
Farmacia	Si	Ininterrumpido con marcha reducida durante la noche
Morgue	Si	Ininterrumpido
Residuos	No	-
Rehabilitación	Si	8 a 20
Consultorios	Si	8 a 20
Cocina	Si	6 a 23
Baños	No	-
Laboratorios y hemoterapia	Si	Ininterrumpido
Lavanderías y depósitos de ropa	No	-
Depósitos y almacenes	No	-
Salas de descanso de médicos	Si	Ininterrumpido con marcha reducida durante la noche
Quirófano	Si	Durante horario de cirugía
Emergencias	Si	Ininterrumpido con marcha reducida durante la noche
Diagnóstico por imágenes	Si	Ininterrumpido
Terapia intensiva	Si	Ininterrumpido
Circulaciones verticales y horizontales	No	-
Salas de espera	Si	8 a 20


A partir de la tabla se puede concluir que es indispensable contar con un sistema de climatización como el VRV que permita independizar la temperatura de cada unidad interior para satisfacer la demanda de cada uno de estos locales según el régimen de funcionamiento.

Por otro lado es sumamente importante considerar la necesidad de contar con un sistema simultáneo de refrigeración y calefacción independientemente del mes del año. Esto se debe a la variación de necesidades térmicas de los locales. Ciertas zonas como la morgue, y laboratorio precisan de una temperatura constante durante todo el año para su correcta operación mediante un sistema de refrigeración. En cambio, la zona de diagnóstico por imágenes debe ser calefaccionadas debido a que los ocupantes poseen menor vestimenta a la hora de realizarse dichos estudios. Luego se tienen otras zonas que poseen una carga interna elevada debido a los equipos que hacen necesaria la refrigeración durante todo el año. Por último zonas como las habitaciones, cocina, rehabilitación, administración, sala de espera y consultorios se climatizan según la estación.

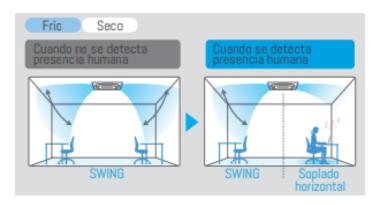
Para satisfacer el requisito de contar con un sistema simultáneo de refrigeración y calefacción se utiliza un sistema de climatización VRV con recuperación de calor la cual transfiere el mismo desde lugares que necesitan refrigeración a lugares que necesitan calefacción mediante un sistema de 3 tubos. Dichas tuberías conectan y trasladan fluído y gas entre las unidades exteriores e interiores. Este tipo de instalaciones cumplen una doble función: ventilar las zonas internas y además recuperar una parte importante de la energía que se expulsa a través de la corriente de aire de extracción.

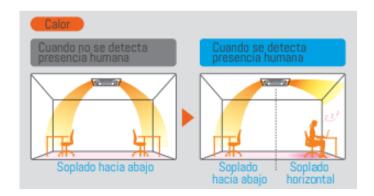
Cuando lo más importante es refrigerar el ambiente, el sistema recicla el calor extraído del aire para luego reutilizarlo para calentar. Los equipos en modo refrigeración que van ubicados en la zona de la morgue, laboratorio y de equipos de elevada carga interna liberan calor de condensación que se perdería en el exterior, pero con el presente sistema se envía dicho calor a las unidades interiores que están trabajando en modo calefacción en zonas como consultorios y salas de espera en invierno logrando así un gran ahorro de energía.

Cuando las necesidades de calefacción son superiores, el sistema utiliza el refrigerante enfriado resultante de la función de calefacción para refrigerar el ambiente más adelante. De este modo, le eficiencia aumenta gracias a la realización simultánea de ambas operaciones en todo momento.

19.2. Unidades exteriores

Las unidades exteriores son compactas y livianas. Estas van ubicadas en la cubierta del edificio y se instalan de manera acoplada donde una de ellas es la unidad "master" que da las señales de funcionamiento y el resto de las unidades se van distribuyendo según la operación requerida para que todas se desgasten en forma pareja para lograr una misma vida útil.




19.3. Unidades interiores

Para las unidades interiores usamos la denominada Cassette montada en el techo la cual detecta la presencia de personas y la temperatura del piso con el fin de brindar comodidad y ahorro de energía.

- Control de la dirección del flujo individual de aire. Dicha unidad posee una función de control de dirección del flujo de aire que se ajusta indivudualmente para cada salida de descarga de aire para evitar corrientes incómodas y lograr una distribución óptima.
- Sensor infrarrojo de presencia. El sensor detecta la presencia humana y ajusta automáticamente la dirección del flujo de aire.

 Sensor infrarrojo de temperatura. Detecta la temperatura del piso y ajusta automáticamente la operación de la unidad interior para reducir la diferencia de temperatura entre el techo y piso.

La unidad interior ofrece una descarga del flujo de aire de 360° en todas las direcciones.

19.4. Mando de control y regulación

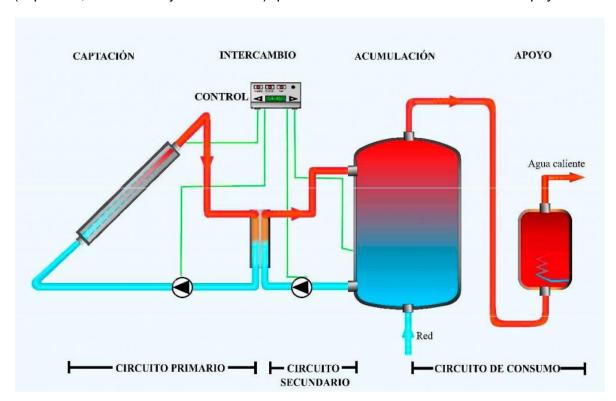
Con un mando centralizado instalado en la zona de administración se habilita y deshabilita las distintas unidades interiores para refrigerar y/o calefaccionar según las necesidades térmicas de las distintas zonas evitando así el desperdicio de energía.

20. PANELES SOLARES TÉRMICOS

En la parte de memoria y cálculo estructural tuvimos en cuenta el peso de paneles solares, los mismos se pueden utilizar como apoyo de los sistemas de calefacción central por agua o para la generación de agua caliente para uso sanitario. Como el sistema de climatización anterior no es por agua, luego se diseñan paneles solares para fines sanitarios.

La energía solar térmica de baja temperatura es una forma de aprovechamiento energético en la que se capta energía solar radiante para transformarla en energía térmica, la cual se distribuye a través de un fluido calor-portador.

20.1. Principio de funcionamiento

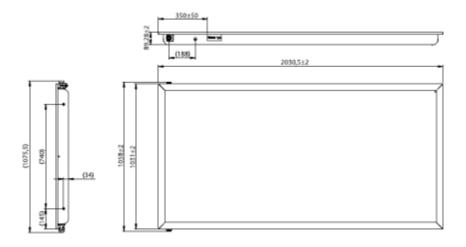

El principio en el que se fundamenta cualquier instalación solar térmica de baja temperatura es el de aprovechar la energía del Sol mediante un conjunto de captadores

para transferirla después a un sistema de almacenamiento que abastecerá el consumo cuando sea necesario. Entendiendo por aprovechamiento de baja temperatura todos los sistemas de energía solar en los que la temperatura del fluido calentado no supera los 100°C.

Una instalación solar térmica se divide en cuatro subsistemas:

- Subsistema de captación.
- Subsistema de intercambio.
- Subsistema de acumulación.
- Subsistema de apoyo.

En la siguiente figura se presenta un esquema de principios de la instalación en cuestión, en el que aparecen los tres primeros subsistemas que se acaban de mencionar (captación, intercambio y acumulación) que irán conectados al subsistema de apoyo.

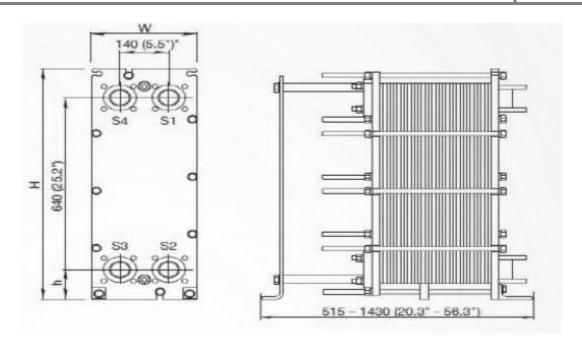

El procedimiento en cualquier instalación solar comienza con la absorción de la energía térmica contenida en los rayos solares que pasará a calentar el fluido que circula por el interior del captador, el cual contará con un aislamiento térmico lo más eficaz posible para evitar que el fluido pierda su calor. En el caso de que el fluido de trabajo sea líquido, como es este caso, la opción más habitual para mantener la energía térmica es a través de un tanque de almacenamiento correctamente aislado. Dado que los depósitos de

almacenamiento pierden el calor con el tiempo, generalmente, se dimensionan para que la acumulación sea la equivalente a la demanda de un día ya que, si se diseñará para cubrir el 100% del consumo, sería necesario instalar unos sistemas de acumulación muy costosos e inviables económicamente. Es por esto que en la instalación se cuenta con un aporte de energía extraordinario que entrará automáticamente en funcionamiento en el caso de un déficit en la producción de ACS por parte del sistema solar. Este sistema de apoyo utilizará medios energéticos convencionales como son gasóleo, gas o electricidad.

20.2. Elementos principales de la instalación

20.2.1. Captación solar

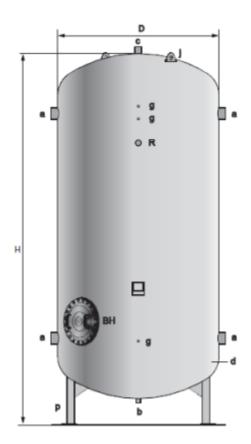
El captador solar plano es un intercambiador de calor que transforma la energía radiante procedente de la radiación solar en energía térmica que aumenta la temperatura de un fluido de trabajo contenido en su interior. Sus principios básicos se pueden numerar de la siguiente forma: 1. El aporte de energía es "incontrolable". 2. El aporte de energía y la demanda en la instalación están desfasados. 3. El rendimiento del captador depende fuertemente de su orientación e inclinación. 4. A menor temperatura de fluido a la entrada al captador mayor será su rendimiento. 5. Interesa la captación de energía solar a la mayor temperatura posible. 6. Entre el consumo de energía solar y de energía convencional siempre se dará preferencia a la primera. Los captadores planos destinados a la producción de ACS están generalmente formados por una caja herméticamente cerrada cuyo lado superior es una superficie acristalada que permite el paso de la radiación solar pero que impide la pérdida de dicha ganancia térmica, el resto de la carcasa que envuelve al captador puede ser de metal, de algún plástico especial u otro material. El interior contiene la placa absorbente, fabricada con materiales con elevada conductividad térmica como son el cobre, aluminio, etc ya que hablamos del lugar en el que se realiza la captación de la radiación solar propiamente dicha. Cuenta con un conjunto de tubos con dos tomas una por donde entra el fluido a calentar y otra por donde sale.



20.2.2. Intercambiador de calor

Un intercambiador de calor es un dispositivo diseñado para transferir el calor entre dos medios, sea que estos estén separados por una barrera sólida o que se encuentren en contacto. Son parte esencial de los dispositivos de refrigeración, acondicionamiento de aire, producción de energía y procesamiento químico. Dada la multitud de aplicaciones que estos dispositivos ofrecen, se puede realizar una clasificación dependiendo de su construcción:

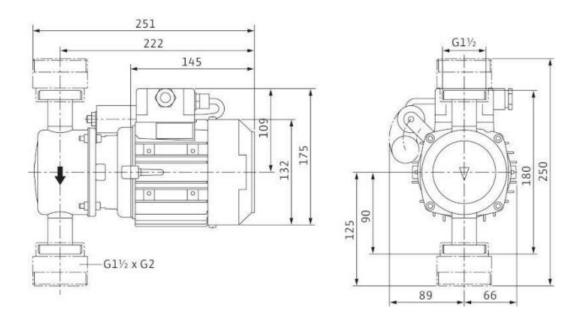
- Intercambiadores de contacto directo: son aquellos dispositivos en los que los fluidos sufren una mezcla física completa.
- Intercambiadores de contacto indirecto: se utilizan dos fluidos de trabajo diferentes para cada circuito que nunca llegan a estar en contacto entre sí.


Para la elección del mismo se consideran aspectos como el tipo de fluido, la densidad, la viscosidad, el contenido en sólidos disueltos, el límite de temperaturas, la conductividad térmica, etc. En este caso se trabaja con un intercambiador de contacto indirecto de placas. De contacto indirecto porque el fluido que circula por el circuito primario, es decir, por el campo de captadores es agua con anticongelante para proteger a la instalación de heladas, mientras que por el circuito secundario circulará el agua destinada al consumo final. El principio de funcionamiento de un intercambiador de placas consiste en transferir el calor del fluido del circuito primario obtenido a su paso por el campo de captadores al fluido del circuito secundario. Está compuesto por una pila de placas metálicas que se mantienen unidas de modo que se forma una serie de pasillos interconectados por los que circula el fluido. Cada placa consta de cuatro orificios de forma que a través de dos de ellos circule el fluido frío o caliente.

20.2.3. Acumulación solar

La energía que se recibe del Sol no siempre coincide con las épocas de mayor consumo, es por esto, que si se desea aprovechar al máximo la energía que concede el Sol, será necesario acumularla en aquellos momentos del día que más radiación existe en forma de calor y en depósitos especialmente diseñados para utilizarla posteriormente cuando se produzca la demanda. Será muy importante tener en cuenta la capacidad de acumulación del depósito que se va a emplear ya que deberá mantener un equilibrio con los metros cuadrados de superficie de captación solar. Por norma general se darán mejores resultados en depósitos con forma cilíndrica, debido al fenómeno de estratificación por el que el agua caliente disminuye su densidad y tiende a ascender por encima del agua fría, de modo que cuando mayor sea la altura del depósito mayor será la diferencia de temperatura entre la parte superior e inferior del tanque. Con una adecuada elección del material de construcción, que evite las corrosiones en el tanque de almacenamiento, y recubiertos de un material aislante.

20.2.4. Sistema de apoyo


El sistema de energía de apoyo o auxiliar es un elemento imprescindible en cualquier instalación solar si no se quieren sufrir restricciones energéticas en aquellos periodos en los que la radiación incidente no es la suficiente para cubrir la demanda y/o el consumo es superior a lo previsto. Para prevenirlo, se cuenta con un apoyo basado en energías "convencionales". Dicho subsistema es recomendable que se encuentre vinculado a un sistema de control adecuado que gestione correctamente la instalación con el fin de reducir al máximo la entrada en funcionamiento de este subsistema auxiliar.

20.2.5. Sistema hidráulico

En cuanto a las tuberías que componen el circuito hidráulico es necesario hacer una distinción entre las destinadas al circuito primario y, por tanto, tuberías exteriores y las pertenecientes al circuito secundario e interiores. Para ambos circuitos se empleará como material el cobre por sus buenas propiedades para trabajar con mezclas de agua y glicol. Es el más aconsejable para instalaciones de energía solar por ser resistente a la corrosión, económico, duradero y con una buena protección contra los contaminantes del suministro de agua doméstica. El circuito primario es aquel que une el campo de captadores con el intercambiador y su posterior retorno. Por el circula como fluido caloportador de trabajo una mezcla con base de propilenglicol al 30%, se emplea este fluido de gran durabilidad por aumentar la capacidad de transferencia térmica en el

circuito, evitando la formación de depósitos, y por la protección que ofrece frente a heladas. En el circuito secundario circulará el agua potable procedente de la red de agua del hospital.

Las bombas se colocarán en la tubería de retorno para el caso del circuito primario y en la entrada al intercambiador en el circuito secundario. Se colocan dos bombas idénticas en paralelo tanto en el circuito primario como en el secundario, dejando una de ellas en reserva para garantizar la continuidad de funcionamiento en caso de avería. Los grupos de bombeo contarán con válvulas de retención para evitar el sentido inverso de la corriente así como válvulas de corte con el fin de poder realizar reparación o mantenimiento. Dentro del sistema hidráulico es necesario evitar la existencia de bolsas de aire en las conducciones de la instalación que provoquen que el caudal de circulación disminuya o incluso llegue a bloquearse. Para hacer esto posible se instalarán purgadores en los lugares altos del circuito ya que serán las zonas más propensas a la acumulación de aire. El circuito primario que une el campo solar con el intercambiador es un circuito cerrado lo que hace que sea necesario un dispositivo de expansión cuya función sea la de absorber las variaciones de volumen de fluido termodinámico que puedan producir al variar su temperatura. El exceso de volumen que se produce al aumentar la temperatura es almacenado en su totalidad en el depósito de expansión y se consigue que la presión se mantenga entre los límites establecidos.

20.2.6. Sistema de regulación y control

En toda instalación solar es necesario un sistema de regulación y control automático en el que, a través de equipos de control, se controlen los diferentes elementos de la instalación. El control del circuito primario se efectúa a través de la bomba del circuito primario, cuyo funcionamiento viene determinado por la diferencia de temperatura en el fluido termodinámico medida entre la salida de los captadores y la salida del acumulador. Este diferencial se activará en el caso de que la diferencia sea superior a 7°C y la bomba comenzará a funcionar. Por el contrario, si la diferencia es inferior a 2ºC el sistema de control detendrá el funcionamiento de la bomba. Otra función del sistema de control se centra en el sistema de apoyo. Para ello se dispondrá de una sonda de temperatura a la salida del acumulador que registrará la temperatura del agua sanitaria, haciendo que el sistema auxiliar entre o no en funcionamiento según la demanda requerida en ese momento. Para este caso el sistema auxiliar se activará en el instante que exista caudal de consumo y la temperatura medida por la sonda sea inferior a la temperatura del agua de consumo más 5°C. Los sensores de temperatura empleados estarán colocados en los distintos puntos del circuito y deberán estar aislados de las condiciones ambientales que los rodean.

20.3. Ventajas

Algunas ventajas asociadas de este tipo de energía son:

- Es inagotable y se renueva. Al contrario que las fuentes tradicionales de energía como el carbón, el gas, el petróleo o la energía nuclear, cuyas reservas son finitas, la energía del sol está disponible en todo el mundo y se adapta a los ciclos naturales (por eso las denominamos renovables). Por ello son un elemento esencial de un sistema energético sostenible que permita el desarrollo presente sin poner en riesgo el de las futuras generaciones.
- El ahorro en las facturas del gas y electricidad destinadas a la producción de agua caliente sanitaria.
- Disminución de nuestra dependencia energética del exterior al garantizarnos un suministro de energía con total autonomía.
- Esta fuente de energía no está sujeta a fluctuaciones de mercado ni sus precios oscilan en torno al coste de la vida u otras circunstancias.
- La energía solar no emite gases de efecto invernadero, por lo que no contribuye al calentamiento global.
- No emite sustancias tóxicas ni contaminantes del aire.

Paneles												
Nº Item 1	Materiales	Cantidad U		Unidad comercial	Unidades	Costo		Precio		Total		Incidencia
	Montantes Perfil PGC 140	2500	unidades			\$	1.776,86	\$	2.150,00	\$	5.375.000,00	33,32%
	Placas OSB	8000	m2	Placa 2.44x1.22m	2687	\$	1.200,00	\$	1.452,00	\$	3.902.176,83	24,19%
	Flejes	3200	unidades			\$	70,00	\$	84,70	\$	271.040,00	1,68%
	Revoque Elastomerico texturado gruepo color	4000	m2	Lata 30kg- 19m2	211		\$3.471	\$	4.200,00	\$	884.210,53	5,48%
	Malla de fibra de vidrio 120 gr, 5cmx 5cm	4000	m2	50m^2	80	\$	2.727,27	\$	3.300,00	\$	264.000,00	1,64%
	Barrera de agua y viento	4000	m2	Rollo de 30m2	133	\$	2.200,00	\$	2.662,00	\$	354.933,33	2,20%
	Solera	800	unidades			\$	1.776,86	\$	2.150,00	\$	1.720.000,00	10,66%
	Uniones perfiles									\$	1.915.704,10	11,88%
UNIONES	Cartela	6400	unidades			\$	380,17	\$	460,00	\$	368.000,00	2,28%
	Tornillos	51200	unidades	caja 500 u	102	\$	1.018,00	\$	1.231,78	\$	126.134,27	0,78%
	Conector	600	unidades			\$	600,00	\$	726,00	\$	435.600,00	2,70%
Anclajes	Barra	600	unidades			\$	454,55	\$	550,00	\$	330.000,00	2,05%
Aliciajes	Tornillos	16200	unidades	caja 500 u	32	\$	1.707,44	\$	2.066,00	\$	66.938,40	0,41%
	Resina	60		Pomos 500cc	60	\$	1.600,00	\$	1.936,00	\$	116.160,00	0,72%
·				·	Т	otal	de materia	ales		\$:	16.129.897,47	

CÓMPUTO 21.

Mate	riales
Acero	43,99%
OSB	24,19%
Anclajes	5,88%

			Cubierta							
Nº Item 2	Materiales	Cant	tidad	Unidad comercial	Unidades	Costo	Ι٩	recio	Total	Incidencia
	Chapa sinusoidal BWG 25	5900	m^2	0,88m2	6705	\$ 623,9	7 \$	755,00	\$ 5.061.931,82	12,38%
	Aislante termico	5900	m^2	Rollo 30m2	197	\$ 4.132,2	3 \$	5.000,00	\$ 983.333,33	2,41%
	Aislacion hidrofuga	5900	m^2	Rollo 20m2	295	\$ 4.844,6	3 \$	5.862,00	\$ 1.729.290,00	4,23%
	Placa OSB	5900	m^2	Placa 2.44x1.22m	1982	\$ 1.500,0	0 \$	1.815,00	\$ 3.597.319,27	8,80%
	Doble aislacion lana de vidroo	5900	m^2	Rollo 10 m2	590	\$ 2.314,0	5 \$	2.800,00	\$ 1.652.000,00	4,04%
	Barrera de vapor	5900	m^2	Rollo 2mx 50m	59	\$ 3.421,4	9 \$	4.140,00	\$ 244.260,00	0,60%
	Placa de Roca de yeso	5900	m^2	Placa 12m2	492	\$ 508,2	6 \$	615,00	\$ 302.375,00	0,74%
	Perfil PGC 90X1.24 - cordón superior	7625	m			\$ 600,0	0 \$	726,00	\$ 5.535.750,00	13,54%
Perfil de acero galvanizado -	Perfil PGC 90X1.24 - cordón inferior	7625	m			\$ 600,0	0 \$	726,00	\$ 5.535.750,00	13,54%
viga reticulada - cubierta	Perfil PGC 90X1.24 - montante	7548,75	m			\$ 600,0	0 \$	726,00	\$ 5.480.392,50	13,41%
	Perfil PGC 90X1.24 - diagonal	9912,5	m			\$ 600,0	0 \$	726,00	\$ 7.196.475,00	17,60%
Uniones									\$ 3.562.255,13	8,71%
·	·			·		Total de mate	riale	es	\$ 40.881.132,05	

Mate	riales
Acero	70,47%
OSB	8,80%
Uniones	8,71%

			Entrepiso						
Nº Item 3	Materiales	Cant	.idad	Unidad comercial	Unidades	Costo	Precio	Total	Incidencia
	Adhesivo+ solado ceramico	5900	m^2	15m2	393	\$ 495,87	\$ 600,00	\$ 236.000,00	0,65%
	Contrapiso armado	5900	m^2	m2		\$ 200,00	\$ 242,00	\$ 1.427.800,00	3,92%
	Film de polietileno	5900	m^2	Rollo 200m^2	30	\$ 4.628,10	\$ 5.600,00	\$ 165.200,00	0,45%
	Panel de PF 100	5900	m^2	10m2	590	\$ 940,00	\$ 1.137,40	\$ 671.066,00	1,84%
	OSB	5900	m^2	Placa 2.44x1.22m	1982	\$ 1.500,00	\$ 1.815,00	\$ 3.597.319,27	9,86%
	Acustiver R	5900	m^2	16m2	369	\$ 6.180,00	\$ 7.477,80	\$ 2.757.438,75	7,56%
	Placa yeso	Cantidad Unidad comercial Unidades Costo Precio Total Incidencia 5900 m^2 15m2 393 \$ 495,87 \$ 600,00 \$ 236.000,00 0,65% 0,65% 5900 m^2 m2 \$ 200,00 \$ 242,00 \$ 1.427.800,00 3,92% 5900 m^2 Rollo 200m^2 30 \$ 4.628,10 \$ 5.600,00 \$ 165.200,00 0,45% 5900 m^2 10m2 590 \$ 940,00 \$ 1.137,40 \$ 671.066,00 1,84% 5900 m^2 Placa 2.44x1.22m 1982 \$ 1.500,00 \$ 1.815,00 \$ 3.597.319,27 9,86% 5900 m^2 Placa 2.44x1.22m 1982 \$ 1.500,00 \$ 7.477,80 \$ 2.757.438,75 7,56% 5900 m^2 Placa 12m2 492 \$ 508,26 \$ 615,00 \$ 302.375,00 0,83% 7625 m \$ 600,00 \$ 726,00 \$ 5.535.750,00 15,18% 7548,75 m \$ 600,00 \$ 726,00 \$ 5.480.392,50 15,03% 9912,5 m \$ 600,00 \$ 726,00 \$ 7.196.475,00 19,73% \$ 600,00 \$ 726,00 \$ 7.196.475,00 19,73%							
	Perfil PGC 140x2.00 - cordón superior	7625	m			\$ 600,00	\$ 726,00	\$ 5.535.750,00	15,18%
ero galvanizado - viga reticulada	Perfil PGC 140x1.60 - cordón inferior	7625	m			\$ 600,00	\$ 726,00	\$ 5.535.750,00	15,18%
ero garvarrizado - viga reticulada	Perfil PGC 90X1.24 - montante	7548,75	m			\$ 600,00	\$ 726,00	\$ 5.480.392,50	15,03%
	Perfil PGC 90X1.24 - diagonal	9912,5	m			\$ 600,00	\$ 726,00	\$ 7.196.475,00	19,73%
Uniones		<u> </u>				<u> </u>		\$ 3.562.255,13	9,77%
				·	Т	Total de materia	ales	\$ 36,467,821,64	,

Mate	riales
Acero	65,12%
OSB	9,86%
Uniones	9,77%

		Platea					
NO bear 4	e= 35 cm	0,35	6100	2135	\$ 30.000	\$ 64.050.000	
№ Item 4	Hormigón platea	e= 15 cm bajo líneas estructurales	0,15	1617	242	\$ 30.000	5 7.274.250

Denominación	Posición	ф (mm)	Longitud 1 b	Longitud total [m]	Separación [m]	Cantidad	Precio x barra (12m)	Precio total
		Plate	ea .					
Dirección x	Superior	20	12	110	0,28	1637	\$ 3.440	\$ 5.630.952
Direction x	Inferior	20	12	110	0,34	1348	\$ 3.440	\$ 4.637.255
Refuerzo bajo líneas	Superior	20	12	215	0,28	302	\$ 3.440	\$ 1.037.631
estructurales- dirección x	Inferior	20	12	215	0,34	248	\$ 3.440	\$ 854.520
Dirección y	Superior	20	12	50	0,48	955	\$ 3.440	\$ 3.284.722
Direction y	Inferior	20	12	50	0,56	818	\$ 3.440	\$ 2.815.476
Refuerzo bajo líneas	Superior	20	12	152	0,48	111	\$ 3.440	\$ 381.625
estructurales- dirección y	Inferior	20	12	152	0,56	95	\$ 3.440	\$ 327.107
·		-					TOTAL	\$ 18.969.288

Material	60%	\$ 183.772.389,56
Mano de obra	40%	\$ 122.514.926,37
Costo		\$ 306.287.315,93

Beneficio	25%	\$ 76.571.828,98
GGD	8%	\$ 24.502.985,27
GGI	3%	\$ 9.188.619,48

Total	\$ 4	16.550.749,67
Precio por m2	\$	35.300,91

22. **HONORARIOS**

Los honorarios anteriormente estaban regulados por el Consejo Profesional donde existían decretos que estipulaban como calcularlo. Actualmente esos decretos no están vigentes, hoy los honorarios están desregulados existiendo un juego de oferta y demanda donde cada uno pacta con su cliente el honorario que quiere cobrar. Sin embargo, estas leyes que lo regulaban se pueden tomar como punto de partida. Dicho honorario es el que toma de referencia la caja de previsión para fijar el aporte jubilatorio que se calcula en proporción del honorario teórico de ley que se debería cobrar al cliente.

El decreto arancelario estipula los honorarios relacionándolos con el monto de la obra. Cuando se fijaron los porcentajes de algún modo se tuvieron en cuenta responsabilidades, tiempos, envergadura de la obra, etc. Se parte de un valor índice que es el precio por m2 (\$/m2). Dicho valor se multiplica por los m2 que posee la obra para obtener el valor total de la misma. A partir del total se tiene que un 7,5% representan los honorarios de arquitectura. De ese 7,5% se obtienen valores parciales que representan la dirección técnica, documentación, proyecto de arquitectura, etc. En el caso de la parte de ingeniería el valor de obra es afectado por un coeficiente de 0,4 para estimar un valor de estructura y de ese valor se aplica un 6% para obtener honorarios. Ese 6% nuevamente se subdivide en valores parciales donde el proyecto de estructura propiamente dicho asume el 90% del 6%.

Antes cuando estaban regulados significaba que este arancel dado por ley era obligatorio. Se consideraba un valor mínimo obligatorio que se debía cobrar a los comitentes haciéndose efectiva la obligación de manera indirecta donde el cliente iba al Consejo Profesional, depositaba el honorario y el Consejo previo a trámites administrativos se lo abonaba al profesional.

La ventaja de esta regulación eran que se aseguraba el cobro efectivo de un valor mínimo que estaba estipulado y que el cliente efectivamente lo pagaba. Sin embargo la desventaja es que no deja de ser una regulación, es decir una especie de intromisión del estado en el pacto entre cliente y profesional.

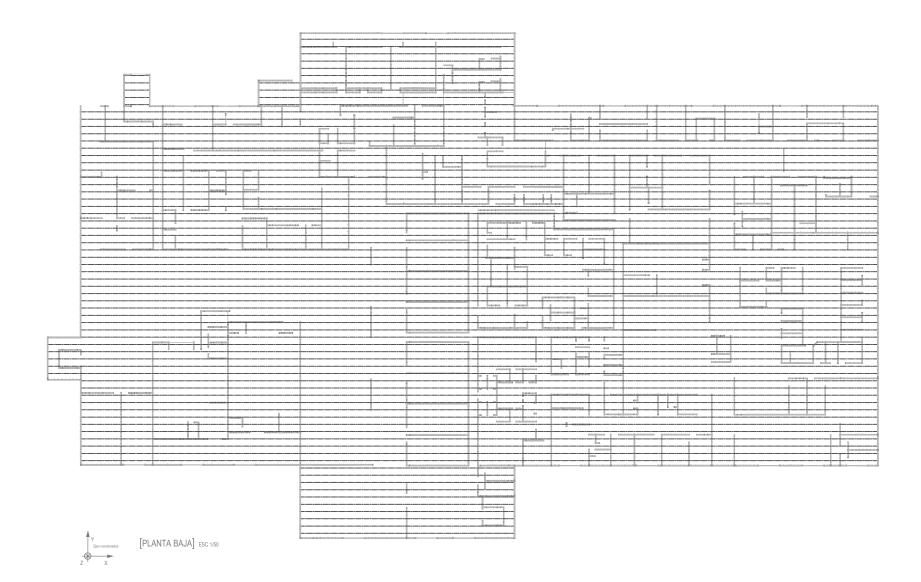
Actualmente en la calle se traduce como un valor de honorario por m2. Al estar desregulada la ley de oferta y demanda y al no haber una percepción de nuestro cliente de cuál es la verdadera tarea que hacen los ingenieros genera que se tengan honorarios inferiores donde por ser más barato a veces no es el mejor trabajo. De todas maneras, los trabajos realizados pasan por auditorías en las reparticiones donde son presentadas (Municipios) ya que las construcciones implican un aspecto de seguridad pública y deben cumplir con los reglamentos vigentes. Por lo tanto con una buena auditoría no importa lo que cobren los profesionales porque todos los trabajos pasan por un control de calidad estricto y se produce de esta manera una regulación indirecta. Luego si se cobra un valor muy bajo y el trabajo está mal hecho no pasa la auditoría. El problema surge cuando dichas auditorías no son de todo eficaces y se produce el efecto de que gana un profesional irresponsable que cobra poco donde no se detecta inmediatamente hasta ver las consecuencias a largo plazo.

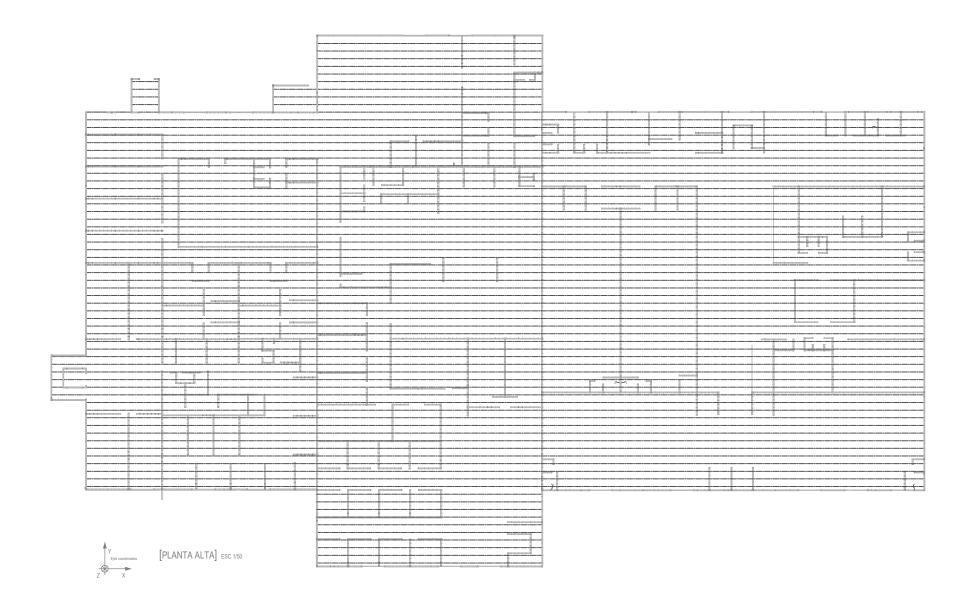
Lo ideal es un control de calidad eficaz y ahí si liberar tarifas a través de la ley de oferta y demanda. En el año 2010 hubo solicitudes de Ingenieros debido a esto y se volvió a una regulación sin tanta intromisión, es decir el cobro es dado al profesional directamente pero si está la obligación de un cobro mínimo. Sin embargo, no hubo un acuerdo en el medio profesional y se terminó derogando la ley por lo que nuevamente hay libertad de honorarios.

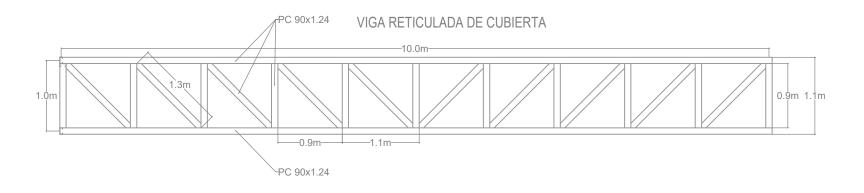
Para estimar los honorarios actualmente se ingresa a la caja previsional técnica para la cual hay que ser Ingeniero y estar matriculado. Se define la categoría según la cantidad de pisos (Categoría 1 a 5) según la envergadura de la misma. Luego se selecciona el tipo de obra y si se desarrolla de manera horizontal o en altura. Lo siguiente es ingresar los m2 de construcción para después marcar las tareas obligatorias mínimas requeridas por la municipalidad. Las tareas mínimas son proyecto, verificación sísmica y la dirección de estructura. También debería incluirse en obras de mediana y gran importancia el ítem detalles.

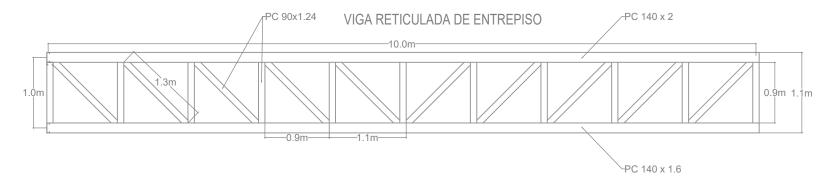
Como resultado se obtiene el honorario sugerido el cual no es obligatorio y el aporte jubilatorio que si es obligatorio. El aporte lo debe pagar el cliente. De todas formas el valor en la calle es inferior al honorario sugerido.

En la siguiente figura se observa un caso de ejemplo:

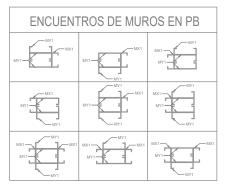


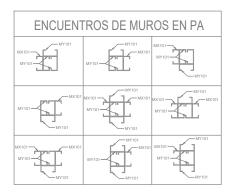

Para el presente proyecto, al no tener acceso a la caja previsional, se calcula de manera aproximada el honorario mediante la antigua regulación.


HONORARIOS		
Precio por m2	\$	35.301
Superficie [m2]		11800
Valor total obra	\$	416.550.750
Honorarios correspondiente a		
arquitectura (Documentación	\$	21 241 206
técnica, dirección técnica,	Ş	31.241.306
proyecto de arquitectura, etc.)		
Honorarios correspondiente a	\$	15.620.653
proyecto de arquitectura	Ş	15.020.053
Valor estructura	\$	166.620.300
Honorarios ingeniería		
(detalles, conducción obra,	\$	9.997.218
proyecto, etc.)		
Honorarios proyecto	\$	8.997.496
estructural	Ą	6.537.430

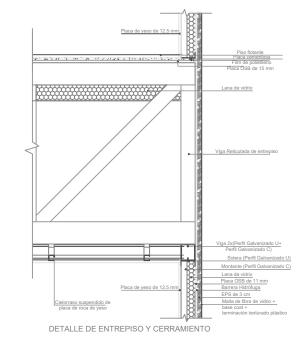

23. REFERENCIAS

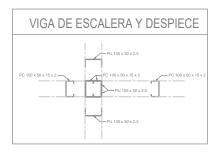
- Alacero (Segunda edición), Manual de Ingeniería de Steel Framing.
- Secretaría de Obras Públicas de la Nación. (2005). Reglamento CIRSOC 101. Reglamento argentino de cargas permanentes y sobrecargas mínimas de diseño para edificios y otras estructuras.
- Secretaría de Obras Públicas de la Nación. (2005). Reglamento CIRSOC 102. Reglamento argentino de acción del viento sobre las construcciones.
- Secretaría de Obras Públicas de la Nación. (2005). Reglamento CIRSOC 103. Reglamento argentino para construcciones sismorresistentes (Parte I).
- Secretaría de Obras Públicas de la Nación. (2005). Reglamento CIRSOC 104. Reglamento argentino de acción de la nieve y del hielo sobre las construcciones.
- Secretaría de Obras Públicas de la Nación. (2009). Reglamento CIRSOC 303. Reglamento argentino de elementos estructurales de acero de sección abierta conformados en frío.
- Ing. Monti, C., (2020). Sistema de climatización VRV, Instalaciones II. Facultad de Ingeniería, Universidad Nacional de Cuyo, Mendoza, Argentina.
- Ing. Monti, C., (2020). Sistemas solares térmicos, Instalaciones II. Facultad de Ingeniería, Universidad Nacional de Cuyo, Mendoza, Argentina.





DETALLES:




NORMATIVA Y DOCUMENTOS EMPLEADOS	
IRSOC 101 - Reglamento Argentino de Cargas Permanentes y Sobrecargas Mínimas de Diseño pa	ra
Edificios y Otras Estructuras. Julio de 2005.	
IRSOC 102 - Reglamento Argentino de Acción del Viento Sobre las Construcciones. Julio de 2005.	
NPRES-CIRSOC 103. Normas Argentinas Para Construcciones Sismorresistentes. PARTE 1.	
Construcciones en General. Agosto de 1931. NPRES-CIRSOC 103. Normas Arsentinas Para Construcciones Sismorresistentes. PARTE 2.	
Construcciones de Hormigón Armado. Julio de 2005.	
NPRES-CIRSOC 103. Normas Argentinas Para Construcciones Sismorresistentes. PARTE 3.	
Construcciones de Mamposteria. Agosto de 1991.	
NPRES-CIRSOC 103. Normas Argentinas Para Construcciones Sismorresistentes. PARTE 4.	
Construcciones de Acero. Julio de 2005.	
IRSOC 104 - Acción de la Nieve y del Hielo Sobre las Construcciones. Julio de 2005.	
IRSOC 201 - Reglamento Argentino de Estructuras de Hormigón. Julio de 2005.	
IRSOC 301 - Reglamento Argentino de Estructuras de Acero para edificios. Julio 2005.	
IRSOCIOI - Reglamento Argentino de Elementos estructurales de Acero de seccion abierta	
onformados en frio. Julio de 2009.	

